Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
Simple Convolutional Neural Network
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Jakub Nenczak
Simple Convolutional Neural Network
Commits
867372ed
Commit
867372ed
authored
4 months ago
by
Jakub Nenczak
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
6a7fe70c
Branches
Branches containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
test_one.py
+140
-0
140 additions, 0 deletions
test_one.py
with
140 additions
and
0 deletions
test_one.py
0 → 100644
+
140
−
0
View file @
867372ed
# test_one.py
import
numpy
as
np
import
os
import
sys
import
matplotlib.pyplot
as
plt
from
collections
import
defaultdict
def
get_working_directory
():
#funkcja
if
getattr
(
sys
,
'
frozen
'
,
False
):
return
os
.
path
.
dirname
(
sys
.
executable
)
else
:
return
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
os
.
chdir
(
get_working_directory
())
#import funkcji z pliku model.py
from
model
import
(
conv_forward
,
pool_forward
,
relu
,
softmax
)
#definicja nazw klas dla lepszej czytelności
CLASS_NAMES
=
[
"
Airplane
"
,
"
Bird
"
,
"
Car
"
,
"
Cat
"
,
"
Deer
"
,
"
Dog
"
,
"
Horse
"
,
"
Monkey
"
,
"
Ship
"
,
"
Truck
"
]
def
read_stl10_images
(
path_to_bin
,
num_images
):
#funkcja do wczytywania obrazów z pliku binarnego STL-10
with
open
(
path_to_bin
,
'
rb
'
)
as
f
:
everything
=
np
.
fromfile
(
f
,
dtype
=
np
.
uint8
)
images
=
everything
.
reshape
(
num_images
,
3
,
96
,
96
)
images
=
np
.
transpose
(
images
,
(
0
,
2
,
3
,
1
))
return
images
def
read_stl10_labels
(
path_to_bin
,
num_labels
):
#funkcja do wczytywania etykiet z pliku binarnego STL-10
with
open
(
path_to_bin
,
'
rb
'
)
as
f
:
labels
=
np
.
fromfile
(
f
,
dtype
=
np
.
uint8
)
labels
=
labels
-
1
return
labels
def
load_stl10
(
root_path
=
"
./stl10_binary
"
):
#funkcja do ładowania zestawu danych STL-10
X_train
=
read_stl10_images
(
os
.
path
.
join
(
root_path
,
'
train_X.bin
'
),
5000
)
y_train
=
read_stl10_labels
(
os
.
path
.
join
(
root_path
,
'
train_y.bin
'
),
5000
)
X_test
=
read_stl10_images
(
os
.
path
.
join
(
root_path
,
'
test_X.bin
'
),
8000
)
y_test
=
read_stl10_labels
(
os
.
path
.
join
(
root_path
,
'
test_y.bin
'
),
8000
)
return
X_train
,
y_train
,
X_test
,
y_test
#wczytywanie danych treningowych i testowych
X_train
,
y_train
,
X_test
,
y_test
=
load_stl10
()
#normalizacja danych testowych
X_test
=
X_test
/
255.0
checkpoint_path
=
"
model_params.npz
"
#wczytanie parametrów modelu z pliku .npz
data
=
np
.
load
(
checkpoint_path
)
W1
=
data
[
"
W1
"
]
b1
=
data
[
"
b1
"
]
W2_conv
=
data
[
"
W2_conv
"
]
b2_conv
=
data
[
"
b2_conv
"
]
W_fc1
=
data
[
"
W_fc1
"
]
b_fc1
=
data
[
"
b_fc1
"
]
W_fc2
=
data
[
"
W_fc2
"
]
b_fc2
=
data
[
"
b_fc2
"
]
conv_hparams1
=
{
"
stride
"
:
1
,
"
pad
"
:
1
}
pool_hparams1
=
{
"
f
"
:
2
,
"
stride
"
:
2
}
conv_hparams2
=
{
"
stride
"
:
1
,
"
pad
"
:
1
}
pool_hparams2
=
{
"
f
"
:
2
,
"
stride
"
:
2
}
def
forward_model
(
X
,
W1
,
b1
,
W2_conv
,
b2_conv
,
W_fc1
,
b_fc1
,
W_fc2
,
b_fc2
):
#foward dla sieci
A1
,
_
=
conv_forward
(
X
,
W1
,
b1
,
conv_hparams1
,
activation
=
relu
)
A2
,
_
=
pool_forward
(
A1
,
pool_hparams1
,
mode
=
"
max
"
)
A3
,
_
=
conv_forward
(
A2
,
W2_conv
,
b2_conv
,
conv_hparams2
,
activation
=
relu
)
A4
,
_
=
pool_forward
(
A3
,
pool_hparams2
,
mode
=
"
max
"
)
A4_flat
=
A4
.
reshape
(
A4
.
shape
[
0
],
-
1
)
Z_fc1
=
A4_flat
.
dot
(
W_fc1
)
+
b_fc1
A_fc1
=
relu
(
Z_fc1
)
Z_fc2
=
A_fc1
.
dot
(
W_fc2
)
+
b_fc2
A_fc2
=
softmax
(
Z_fc2
)
return
A_fc2
print
(
"
Wczytano parametry z pliku:
"
,
checkpoint_path
)
while
True
:
index_str
=
input
(
f
"
Podaj indeks obrazu testowego (0 -
{
X_test
.
shape
[
0
]
-
1
}
) lub
'
q
'
aby wyjść:
"
)
if
index_str
.
lower
()
==
'
q
'
:
break
try
:
index
=
int
(
index_str
)
if
index
<
0
or
index
>=
X_test
.
shape
[
0
]:
print
(
f
"
Nieprawidłowy indeks. Proszę podać liczbę z zakresu 0 -
{
X_test
.
shape
[
0
]
-
1
}
.
"
)
continue
except
ValueError
:
print
(
"
Proszę podać liczbę lub
'
q
'
.
"
)
continue
img
=
X_test
[
index
]
true_label
=
y_test
[
index
]
A_fc2_test
=
forward_model
(
img
.
reshape
(
1
,
96
,
96
,
3
),
W1
,
b1
,
W2_conv
,
b2_conv
,
W_fc1
,
b_fc1
,
W_fc2
,
b_fc2
)
pred_label
=
np
.
argmax
(
A_fc2_test
,
axis
=
1
)[
0
]
correctness
=
"
Poprawnie
"
if
pred_label
==
true_label
else
"
Niepoprawnie
"
#wyświetlenie obrazu (obracanie o 90 stopni w lewo dla lepszej wizualizacji)
rotated_img
=
np
.
rot90
(
img
,
k
=
3
)
plt
.
imshow
(
rotated_img
)
plt
.
axis
(
'
off
'
)
#wyłączenie osi dla lepszej estetyki
plt
.
title
(
f
"
Prawdziwa etykieta:
{
CLASS_NAMES
[
true_label
]
}
, Predykcja:
{
CLASS_NAMES
[
pred_label
]
}
(
{
correctness
}
)
"
)
plt
.
show
()
#koniec programu
print
(
"
Program zakończył działanie.
"
)
This diff is collapsed.
Click to expand it.
Preview
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment