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possible to 0.3 m without exceeding 0.3 m, when the ship is resting on the surface of
Glia-4. (The limit of 0.3 m is imposed by unloading clearance requirements.)

[ (¢) The other adjustable component on the landing system is the linear shock-damper, which

L may be adjusted in increments of Ab = 500 N-sec/m, from a low value of 1000 N-sec/m
to a high value of 10,000 N-sec/m. It is desirable to make b as small as possible because a
large b produces large forces at impact. However, if b is too small, there is some danger
that the probe will rebound after impact. To minimize the chance of this, find the smallest
value of b such that the springs are always in compression during the oscillations after
impact. Use a minimum impact velocity V; = 5 m/sec downward. To find this value of b,
you will need to use a software package to integrate the differential equation.

B Spread of Staph Infections in
Hospitals—Part I

Courtesy of Joanna Pressley, Assistant Professor, and
Professor Glenn Webb, Vanderbilt University

Methicillin-resistant Staphylococcus aureus (MRSA), commonly referred to as staph, is a bacterium
that causes serious infections in humans and is resistant to treatment with the widely used antibiotic
methicillin. MRSA has traditionally been a problem inside hospitals, where elderly patients or
patients with compromised immune systems could more easily contract the bacteria and develop
bloodstream infections. MRSA is implicated in a large percentage of hospital fatalities, causing more
deaths per year than AIDS. Recently, a genetically different strain of MRSA has been found in the
community at large. The new strain (CA-MRSA) is able to infect healthy and young people, which the
traditional strain (HA-MRSA) rarely does. As CA-MRSA appears in the community, it is inevitably
being spread into hospitals. Some studies suggest that CA-MRSA will overtake HA-MRSA in the
hospital, which would increase the severity of the problem and likely cause more deaths per year.

To predict whether or not CA-MRSA will overtake HA-MRSA, a compartmental model has
been developed by mathematicians in collaboration with medical professionals (see references
[1], [2] on page 312). This model classifies all patients in the hospital into three groups:

* H(t) = patients colonized with the traditional hospital strain, HA-MRSA.
* C(1) = patients colonized with the community strain, CA-MRSA.
* S(¢) = susceptible patients, those not colonized with either strain.

The parameters of the model are

* B¢ = the rate (per day) at which CA-MRSA is transmitted between patients.
* By = the rate (per day) at which HA-MRSA is transmitted between patients.

* Oc = the rate (per day) at which patients who are colonized with CA-MRSA exit the
hospital by death or discharge.

* Oy = the rate (per day) at which patients who are colonized with HA-MRSA exit the
hospital by death or discharge.

* Og = the rate (per day) at which susceptible patients exit the hospital by death or discharge.

* ac = the rate (per day) at which patients who are colonized with CA-MRSA successfully
undergo decolonization measures.

* oy = the rate (per day) at which patients who are colonized with HA-MRSA successfully
undergo decolonization measures.

e N = the total number of patients in the hospital.
e A =the rate (per day) at which patients enter the hospital.
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Figure 5.54 A diagram of how patients transit between the compartments

Patients move between compartments as they become colonized or decolonized (see
Figure 5.54). This type of model is typically known as an SIS (susceptible-infected-susceptible)
model, in which patients who become colonized can become susceptible again and colonized

again (there is no immunity).
The transition between states is described by the following system of differential equations:
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dt  entrance rate N N
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acquire HA-MRSA
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If we assume that the hospital is always full, we can conserve the system by letting

A = 8S(t) + 8,H (1) + 8.C(1). In this case S(r) + C(r) + H(r) = N for all ¢ (assuming you

start with a population of size N).
(a) Show that this assumption simplifies the above system of equations to

DL (Bu/NIN = € = H)H = (3 + ap)H.
1)
€ _ (Be/N)(N = C = H)C = (3¢ + ac)C

dt

S is then determined by the equation S(r) = N — H(t) — C(1)
Parameter values obtained from the Beth Israel Deaconess Medical Center are given in Table 5.4

on page 312. Plug these values into the model and then complete the following problems.

(b) Find the three equilibria (critical points) of the system (1).

(¢) Using a computer, sketch the direction field for the system (1).

(d) Which trajectory configuration exists near each critical point (node, spiral, saddle, or
center)? What do they represent in terms of how many patients are susceptible, colo-

nized with HA-MRSA, and colonized with CA-MRSA over time?
(e) Examining the direction field, do you think CA-MRSA will overtake HA-MRSA in the

hospital?
Further discussion of this model appears in Project E of Chapter 12.7

TAll references to Chapters 11-13 refer to the expanded text Fundamentals of Differential Equations and Boundary

Value Problems, 6th ed.
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12858 Parameter Values for the Transmission Dynamics of Community-Acquired and
Hospital-Acquired Methicillin-Resistant Staphylococcus aureus Colonization
(CA-MRSA and HA-MRSA)

Parameter Symbol Baseline Value

Total number of patients N 400

Length of stay

Susceptible 1/8 5 days

Colonized CA-MRSA 1/5¢ 7 days

Colonized HA-MRSA 1/6y 5 days

Transmission rate per susceptible patient to

Colonized CA-MRSA per colonized CA-MRSA Bc 0.45 per day

Colonized HA-MRSA per colonized HA-MRSA Bu 0.4 per day

Decolonization rate per colonized patient

per day per length of stay

CA-MRSA ac 0.1 per day

HA-MRSA ay 0.1 per day
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C Things That Bob

Courtesy of Richard Bernatz, Department of Mathematics, Luther College

The motion of various-shaped objects that bob in a pool of water can be modeled by a second-
order differential equation derived from Newton’s second law of motion, F = ma. The forces
acting on the object include the force due to gravity, a frictional force due to the motion of the
object in the water, and a buoyant force based on Archimedes’ principle: An object that is
completely or partially submerged in a fluid is acted on by an upward (buoyant) force equal to the
weight of the water it displaces.

(a) The first step is to write down the governing differential equation. The dependent vari-
able is the depth z of the object’s lowest point in the water. Take z to be negative down-
ward so that z = —1 means 1 ft of the object has submerged. Let V(z) be the submerged
volume of the object, m be the mass of the object, p be the density of water (in pounds
per cubic foot), g be the acceleration due to gravity, and vy,, be the coefficient of friction
for water. Assuming that the frictional force is proportional to the vertical velocity of
the object, write down the governing second-order ODE.

(b) For the time being, neglect the effect of friction and assume the object is a cube measur-
ing L feet on a side. Write down the governing differential equation for this case. Next,
designate z = [ to be the depth of submersion such that the buoyant force is equal and




