CHAPTER 5
Introduction to Systems and

Phase Plane Analysis

5.1 INTERCONNECTED FLUID TANKS

Two large tanks, each holding 24 liters of a brine solution, are interconnected by pipes
as shown in Figure 5.1. Fresh water flows into tank A at a rate of 6 L/min, and fluid is
drained out of tank B at the same rate; also 8 L/min of fluid are pumped from tank A
to tank B, and 2 L/min from tank B to tank A. The liquids inside each tank are kept
well stirred so that each mixture is homogeneous. If, initially, the brine solution in tank
A contains x, kg of salt and that in tank B initially contains y, kg of salt, determine the
mass of salt in each tank at time ¢ > 0.

. A B
6 L/min I 8 L/min I
—_—
(1) B —— y(®)
24 L 24 L
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2 L/min

Figure 5.1 Interconnected fluid tanks

Note that the volume of liquid in each tank remains constant at 24 L because of the balance
between the inflow and outflow volume rates. Hence, we have two unknown functions of #: the
mass of salt x(7) in tank A and the mass of salt y(¢) in tank B. By focusing attention on one tank
at a time, we can derive two equations relating these unknowns. Since the system is being
flushed with fresh water, we expect that the salt content of each tank will diminish to zero as
t— +oo0.

To formulate the equations for this system, we equate the rate of change of salt in each
tank with the net rate at which salt is transferred to that tank. The salt concentration in tank A
is x(¢)/24 kg/L, so the upper interconnecting pipe carries salt out of tank A at a rate of 8x/24
kg/min; similarly, the lower interconnecting pipe brings salt into tank A at the rate 2y/24
kg/min (the concentration of salt in tank B is y/24 kg/L). The fresh water inlet, of course,
transfers no salt (it simply maintains the volume in tank A at 24 L). From our premise,

% = input rate — output rate ,

For this application we simplify the analysis by assuming the lengths and volumes of the pipes are sufficiently small
that we can ignore the diffusive and advective dynamics taking place therein.
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so the rate of change of the mass of salt in tank A is

dad_2 8 _ 1 1
ar 247 2t T 12 T3t

The rate of change of salt in tank B is determined by the same interconnecting pipes and by the

drain pipe, carrying away 6y/24 kg/min:

dy _8 2 6 1 1
dr 24" T 24Y T 2aY T3 T3V

The interconnected tanks are thus governed by a system of differential equations:

0 x——gx—i-ﬁy,
=11
y 3t T3

Although both unknowns x(7) and y(¢) appear in each of equations (1) (they are “coupled”), the
structure is so transparent that we can obtain an equation for y alone by solving the second
equation for x,

() x=3y +y,

and substituting (2) in the first equation to eliminate x:

’ I__l ! L
By +y) = =303 +y) + 5.

n ! ! 1 l
'y =y BELARTLE

or

3y”+2y’+%y=0.

This last equation, which is linear with constant coefficients, is readily solved by the methods

of Section 4.2. Since the auxiliary equation

3r2+2r+i=0

has roots —1/2, —1/6, a general solution is given by
3 y(t) = cle_’/2 + cze_’/(’ .

Having determined y, we use equation (2) to deduce a formula for x:

@ x(t) = 3<—%e_’/2 - %e_’/6> + cle_’/2 + cze_’/6 = —%cle_’/z + %Qe_’/ﬁ .

Formulas (3) and (4) contain two undetermined parameters, ¢; and c¢,, which can be
adjusted to meet the specified initial conditions:

x(0) = —2¢; +

1
> 5€2 = X0 y0)=c;+ =y,
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or
Yo — 2x _ Y + 2x

aT T @ 2

Thus, the mass of salt in tanks A and B at time ¢ are, respectively,

(1) = _(yo —42xo>e_t/2 n <yo ‘;2)60)6_,/6 ’

N e R

The ad hoc elimination procedure that we used to solve this example will be generalized
and formalized in the next section, to find solutions of all linear systems with constant coeffi-
cients. Furthermore, in later sections we will show how to extend our numerical algorithms for
first-order equations to general systems and will consider applications to coupled oscillators
and electrical systems.

It is interesting to note from (5) that all solutions of the interconnected-tanks problem tend to
the constant solution x(7) = 0, y(rf) = 0 ast — -+ oo. (This is of course consistent with our phys-
ical expectations.) This constant solution will be identified as a stable equilibrium solution in
Section 5.4, in which we introduce phase plane analysis. It turns out that, for a general class of
systems, equilibria can be identified and classified so as to give qualitative information about the
other solutions even when we cannot solve the system explicitly.

€))

DIFFERENTIAL OPERATORS AND THE ELIMINATION
METHOD FOR SYSTEMS

The notation y'(r) = % = %y was devised to suggest that the derivative of a function y is the

result of operating on the function y with the differentiation operator % Indeed, second
d2

derivatives are formed by iterating the operation: y"(¢) = d_tg = %% y. Commonly, the sym-

bol D is used instead of %, and the second-order differential equation

Yrdy +3y=0
is represented’ by
D*y + 4Dy + 3y = (D*+ 4D + 3)[y] = 0 .

So, we have implicitly adopted the convention that the operator “product,” D times D, is
interpreted as the composition of D with itself, when it operates on functions: D?y means D(D[y]);
i.e., the second derivative. Similarly, the product (D + 3)(D + 1) operates on a function via

(D+3)(D+1)[y] = (D +3)[(D+1)[y]] =D +3)y +y]
=Dy +y] +3[y +y]
=("+y)+ @By +3y)=y"+4y +3y=(D*+4D +3)[y] .

TSome authors utilize the identity operator 7, defined by 7 [ y} =y, and write more formally D? + 4D + 3[ instead of
D>+ 4D + 3.
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Thus, (D + 3)(D + 1) is the same operator as D*> + 4D + 3; when they are applied to
twice-differentiable functions, the results are identical.

Show that the operator (D + 1)(D + 3) is also the same as D> + 4D + 3.
For any twice-differentiable function y(#), we have
D+ 10D +3)[y] =@+ D)[(D+3)[y]] = (0 + 1)y +3y]
= D[y +3y] +1[y" +3y] = (" +3y) + (' + 3y)
=y"+4y +3y=(D>+4D +3)[y] .
Hence, (D + 1)(D+3)=D*+4D + 3. *

Since (D + 1)(D +3)= (D + 3)(D + 1) = D* + 4D + 3, it is tempting to generalize and
propose that one can treat expressions like aD* + bD + c as if they were ordinary polynomials
in D. This is true, as long as we restrict the coefficients a, b, ¢ to be constants. The following
example, which has variable coefficients, is instructive.

Show that (D + 3¢)D is not the same as D(D + 3t).

With y(¢) as before,
(D+30)D[y] = (D +30)[y'] =y + 3ty ;
D(D + 3t)[y] = D[y" + 3ty] =y" + 3y + 31y’ .

They are not the same!

Because the coefficient 37 is not a constant, it “interrupts” the interaction of the differenti-
ation operator D with the function y(f). As long as we only deal with expressions like
aD* + bD + ¢ with constant coefficients a, b, and ¢, the “algebra” of differential operators fol-
lows the same rules as the algebra of polynomials. (See Problem 39 for elaboration on this point.)

This means that the familiar elimination method, used for solving algebraic systems like

3x—2y+z=4,
x+y—z=0,
2x—y+3z2=6,
can be adapted to solve any system of linear differential equations with constant coefficients.
In fact, we used this approach in solving the system that arose in the interconnected tanks prob-
lem of Section 5.1. Our goal in this section is to formalize this elimination method so that we
can tackle more general linear constant coefficient systems.

We first demonstrate how the method applies to a linear system of two first-order differen-
tial equations of the form

aix' (1) + ax(t) + azy' (1) + agy(r) = fi(1)
asx' (1) + aex(t) + azy' (1) + agy(t) = f(1) .

where a,, a,, . . ., ag are constants and x(z), y(¢) is the function pair to be determined. In opera-
tor notation this becomes

(@D + a))[x] + (a3D + ay)[y] = f; .
(asD + ag)[x] + (a7:D + ag)[y] = f> .
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Solve the system

D x'(2) = 3x(r) — 4y(s) + 1,
y'(t) = 4x(1) — Ty(z) + 10z .

The alert reader may observe that since y’ is absent from the first equation, we could use the
latter to express y in terms of x and x’ and substitute into the second equation to derive an
“uncoupled” equation containing only x and its derivatives. However, this simple trick will not
work on more general systems (Problem 18 is an example).

To utilize the elimination method, we first write the system using the operator notation:

(D—=3)[x]+4y=1,

2
—4x + (D + 7)[y] = 10t .

Imitating the elimination procedure for algebraic systems, we can eliminate x from this system
by adding 4 times the first equation to (D — 3) applied to the second equation. This gives
(16 + (D =3)(D +7))[y] = 4-1+ (D —3)[10:] = 4 + 10 — 30r ,
which simplifies to
3) (D* + 4D — 5)[y] = 14 — 30z .

Now equation (3) is just a second-order linear equation in y with constant coefficients that has
the general solution

4) y(t) = Cle™ + Cye' + 61 + 2,

which can be found using undetermined coefficients.
To find x(¢), we have two options.

Method 1. We return to system (2) and eliminate y. This is accomplished by “multiplying” the
first equation in (2) by (D + 7) and the second equation by —4 and then adding to obtain
(D> + 4D — 5)[x] =7 — 40t .
This equation can likewise be solved using undetermined coefficients to yield
5) x(t) = Kie™ + Kye' + 8+ 5,

where we have taken K| and K, to be the arbitrary constants, which are not necessarily the
same as C; and C, used in formula (4).

It is reasonable to expect that system (1) will involve only two arbitrary constants, since it
consists of two first-order equations. Thus, the four constants C;, C,, K|, and K, are not inde-
pendent. To determine the relationships, we substitute the expressions for x(¢) and y(z) given in
(4) and (5) into one of the equations in (1), say, the first one. This yields

_SKle_St + Kzet + 8 =
3Kie ™ + 3K,e' + 24t + 15 — 4Cj1e > — 4Che’ — 24t — 8 + 1,
which simplifies to

(4C1 - 8K1)€_5r + (4C2 - 2K2)€t =0.
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Because ¢’ and e ' are linearly independent functions on any interval, this last equation holds
for all ¢ only if

4C, — 8K, =0 and 4C, —2K, =0 .

Therefore, K, = C,/2 and K, = 2C,.
A solution to system (1) is then given by the pair

(6) x(1) = %Cle_S’ +2Ce" +8t+5, yt)=Cle ™+ Coe' + 61+ 2.
As you might expect, this pair is a general solution to (1) in the sense that any solution to (1)

can be expressed in this fashion.

Method 2. A simpler method for determining x() once y(#) is known is to use the system to
obtain an equation for x(¢) in terms of y(¢) and y'(¢). In this example we can directly solve the
second equation in (1) for x(¢):

_ 1 T =3
X(f) - 4y (t) + 4y(t> 2t .
Substituting y() as given in (4) yields
x(1) = i[—SCIe‘S’ + Cye' + 6] + %[Cle_S’ + Coe' + 61 + 2]

= %Cle_S’ + 2Ce’ + 8t + 5,

5,
2

which agrees with (6). ¢

The above procedure works, more generally, for any linear system of two equations and
two unknowns with constant coefficients regardless of the order of the equations. For example,
if we let Ly, L, L3, and L4 denote linear differential operators with constant coefficients (i.e.,
polynomials in D), then the method can be applied to the linear system

Li[x] + L[y] =1,
L3[x] + L4[y] =f .

Because the system has constant coefficients, the operators commute (e.g., LoLy = L4L5)
and we can eliminate variables in the usual algebraic fashion. Eliminating the variable y gives
(1) (LiLy = LoLy)[x] = &1
where g1 = L4[ fi] — L,[ f>]. Similarly, eliminating the variable x yields

6] (LiLy — LyL3)[y] = g »

where g, ‘= L[ f,] — Ls[ f1]. Now if L1L, — L,L; is a differential operator of order n, then a
general solution for (7) contains n arbitrary constants, and a general solution for (8) also
contains n arbitrary constants. Thus, a total of 2z constants arise. However, as we saw in Exam-
ple 3, there are only n of these that are independent for the system; the remaining constants can
be expressed in terms of these.” The pair of general solutions to (7) and (8) written in terms of
the n independent constants is called a general solution for the system.

For a proof of this fact, see Ordinary Differential Equations, by M. Tenenbaum and H. Pollard (Dover, New York,
1985), Chapter 7.



248

Chapter 5

Example 4

Solution

Introduction to Systems and Phase Plane Analysis

If it turns out that L,L, — L,L5 is the zero operator, the system is said to be degenerate.
As with the anomalous problem of solving for the points of intersection of two parallel or coin-
cident lines, a degenerate system may have no solutions, or if it does possess solutions, they
may involve any number of arbitrary constants (see Problems 23 and 24).

Elimination Procedure for 2 x 2 Systems

To find a general solution for the system

Li[x] + L[y] = £ ,
Ly[x] + Lily] = £ .
where L,, L,, L3, and L, are polynomials in D = d/dt:

(a) Make sure that the system is written in operator form.

(b) Eliminate one of the variables, say, y, and solve the resulting equation for x(z). If the
system is degenerate, stop! A separate analysis is required to determine whether or
not there are solutions.

(¢) (Shortcut) If possible, use the system to derive an equation that involves y(¢) but not
its derivatives. [Otherwise, go to step (d).] Substitute the found expression for x(7)
into this equation to get a formula for y(z). The expressions for x(z), y() give the
desired general solution.

(d) Eliminate x from the system and solve for y(z). [Solving for y(¢) gives more
constants—in fact, twice as many as needed.]

(e) Remove the extra constants by substituting the expressions for x(¢) and y(¢) into
one or both of the equations in the system. Write the expressions for x(¢) and y(¢) in
terms of the remaining constants.

Find a general solution for

x"() + y' (1) — x(r) + y(1) = -1,
x' (1) + y'(t) — x(r) = 12

We begin by expressing the system in operator notation:

®

(D> = Dx] + D+ 1)[y] = -1,

o (D—1)[x] +D[y] =1 .

Here L;'=D>— 1,L,>=D + 1,Ly;:=D — 1,and L, ‘= D.
Eliminating y gives [see (7)]:
(0> =)D = (D + (D = 1)) [x] = DI-11 = (D + D[] ,

which reduces to

(D> = 1)(D — 1)[x] = =2t — 1%,
(1) (D= 12D+ 1)[x] = -2t —¢*.
Since (D — 1)*(D + 1) is third order, we should expect three arbitrary constants in a general
solution to system (9).

Although the methods of Chapter 4 focused on solving second-order equations,
we have seen several examples of how they extend in a natural way to higher-order
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equations.” Applying this strategy to the third-order equation (11), we observe that the corre-
sponding homogeneous equation has the auxiliary equation (r — 1)*(r + 1) = 0 with roots
r = 1,1, —1. Hence, a general solution for the homogeneous equation is

x,(t) = Cre' + Cote’ + Cye ™" .
To find a particular solution to (11), we use the method of undetermined coefficients with

xp(t) = Ar?> + Bt + C. Substituting into (11) and solving for A, B, and C yields (after a little

algebra)
x,(t) = =12 — 4t —6 .
Thus, a general solution to equation (11) is
(12)  x(t) = x,(1) + x,(1) = Cre' + Cote' + Cze™ — 1> — 41 — 6 .
To find y(z), we take the shortcut described in step (c) of the elimination procedure box.
Subtracting the second equation in (10) from the first, we find
(DZ—D)[x] +y=—-1-1¢*,
so that
y=(D-D})[x]—1-1¢.
Inserting the expression for x(¢), given in (12), we obtain
y(t) = Cie' + Cylte' + ') — Cie™ — 2t — 4
—[Cie' + Cylte" + 2¢") + Cze™ = 2] = 1 — 1,
(13)  y(t) = —Cye' —2Cie " =12 =2t —3 .
The formulas for x(¢) in (12) and y(¢) in (13) give the desired general solution to (9). ¢

The elimination method also applies to linear systems with three or more equations and
unknowns; however, the process becomes more cumbersome as the number of equations and
unknowns increases. The matrix methods presented in Chapter 9 are better suited for handling
larger systems. Here we illustrate the elimination technique for a 3 X 3 system.

Find a general solution to

x'(r) = x(0) + 2y(1) = 2(r)
14 y'(0) =) + 2(0)
2'(1) = 4x(1) — 4y(z) + 5z(z) .
We begin by expressing the system in operator notation:
(D—-1[x]-2y+z=0,
(15) —x+D[y]—z=0,
—4x+4y+ (D-5)[z] =0.

Eliminating z from the first two equations (by adding them) and then from the last two
equations yields (after some algebra, which we omit) we find

(D—=2)x] +(D-2)[y] =0,

(16)
—(D = D]+ (-1 -4)[y]=0.

"More detailed treatment of higher-order equations is given in Chapter 6.
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On eliminating x from this 2 X 2 system, we eventually obtain

(D=1 =2)(D=-3)[y] =0,

which has the general solution
(17)  y(t) = Cie' + Cre® + Cie?' .

Taking the shortcut approach, we add the two equations in (16) to get an expression for x
in terms of y and its derivatives, which simplifies to

x=(D*=4D +2)[y] =y — 4 + 2y .
When we substitute the expression (17) for y(z) into this equation, we find

(18)  x(r) = —Cie' — 2Ce* — Cye?' .
Finally, using the second equation in (14) to solve for z(z), we get

() = y'(1) — x(2) ,

and substituting in for y(¢) and x(¢) yields
(19)  z(t) = 2Cje" + 4Coe* + 4Cye™ .

The expressions for x(z) in (18), y(¢) in (17), and z(¢) in (19) give a general solution with
Cy, C,, and Cj as arbitrary constants.

5.2 EXERCISES

l.let A=D—1,B=D+2C=D>+D—-2 1 (D’=1u]+5v=¢, 12. D’[u] + D[v] =2,
where D = d/dt. Fory = 1 — 8, compute 2u+(D*+2)[v] =0 4u + D[v] =6
(a) Aly] (b) B[A[y]] (¢) B[yl 13. % — x4y, 14. % y=12,
(d) A[B[yll (e) CIyl 4 4
2. Show that the operator (D — 1)(D + 2) is the same d_)t] =x+y —x + 7); =1
as the operator D* + D — 2.
dw dx dy
15.d = 5w + 2z + 5t , 16.7+x+7=e’,
In Problems 3—18, use the elimination method to find a 4 ! 5 !
general solution for the given linear system, where dif- % = 3w + 4z + 17t oy + d_32’ —0
ferentiation is with respect to t. dt dt
3.x +2y=0, 4. x'=x—y, 17. x" + 5x —4y =0,
X' =y =0 yo=y - A —x+y +2y=0
5. +y —x=5, 6. x'=3x—2y+sint, 18. X" +y" —x' =2t ,
Xy +y=1 y’=4x—y—cosl 4y —xty=-l
7. (D + 1)[“] (D 1)[”] =e, In Problems 19-21, solve the given initial value problem.
(D—l)[u]+( +1>[U]: 19.%=4x+y; x(0) =1,
8. (D—3)x]+ (- 1)) =1, ‘
D+ Dx]+ (D +4)[y] =1 d_};:_zx+y; y(0) = 0
9. x' +y +2x =0,
x'+y —x—y=sint 20.%=2x+y—62t; x(0)=1,
10 2 +y —x—y=e¢ ", d

Y
xr+yr+2x+y:et E:x—’—zy’ y(()):_l
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d*x

21. bl x(0)=3, x'(0)=1,
d*y
— =X 0)=1, "0) = -1
e ¥(0) y'(0)
22. Verify that the solution to the initial value problem
X' =5x—3y—2; x(0) =2,
y =4 —-3y—1; y0)=0

satisfies |x(¢)| + |y(f)| = + o0 as t — +oo.

In Problems 23 and 24, show that the given linear system
is degenerate. In attempting to solve the system, determine
whether it has no Solutionv or inﬁnitely many solutions.

23. (D — 1)[x] + Niy] = ,
(D + 2)[x] + D+2[]—3e

24. D[x] + (D + 1)[y]
D*[x] + (D* + D)y

:ez,
=0

In Problems 25-28, use the elimination method to find
a general solution for the given system of three equa-
tions in the three unknown functions x(t), y(t), z(t).

25. X' =x+2y —z, 26. x' =3x+y—1z,

v =x+z, yV=x+2y—1z,

7 =4x — 4y + 5z 7 =3x+3y—z2
27. x' = 4x — 4z, 28. x' = x+ 2y + z,

y' =4y =2z, y=6x—y,

7' = —2x — 4y + 4z 7= —x—2y—z2

In Problems 29 and 30, determine the range of values (if
any) of the parameter A that will ensure all solutions x(t),
y(1) of the given system remain bounded as t — + .

32.

33.

34.
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tank A into tank B at a rate of 3 L/min and from B
into A at a rate of 1 L/min (see Figure 5.2). The lig-
uid inside each tank is kept well stirred. A brine solu-
tion with a concentration of 0.2 kg/L of salt flows
into tank A at a rate of 6 L/min. The (diluted) solu-
tion flows out of the system from tank A at 4 L/min
and from tank B at 2 L/min. If, initially, tank A con-
tains pure water and tank B contains 20 kg of salt,
determine the mass of salt in each tank at time ¢ = 0.

In Problem 31, 3 L/min of liquid flowed from tank A
into tank B and 1 L/min from B into A. Determine
the mass of salt in each tank at time ¢ = 0 if, instead,
5 L/min flows from A into B and 3 L/min flows from
B into A, with all other data the same.

In Problem 31, assume that no solution flows out of
the system from tank B, only 1 L/min flows from A
into B, and only 4 L/min of brine flows into the sys-
tem at tank A, other data being the same. Determine
the mass of salt in each tank at time r = 0.

Feedback System with Pooling Delay. Many
physical and biological systems involve time delays.
A pure time delay has its output the same as its input
but shifted in time. A more common type of delay is
pooling delay. An example of such a feedback system
is shown in Figure 5.3 on page 252. Here the level of
fluid in tank B determines the rate at which fluid
enters tank A. Suppose this rate is given by
R(1) = a[V — VQ(t)], where « and V are positive
constants and V,(7) is the volume of fluid in tank B
at time 1.
(a) If the outflow rate R; from tank B is constant
and the flow rate R, from tank A into B is
R,(t) = KV,(t), where K is a positive constant

29, dx _ A=y, 30. dx _ —x+ Ay, and V/,(z) is the volume .Of fluid in tank A at tim'e
dt dr t, then show that this feedback system is
dy Ay + dy governed by the system
a FTY a FY av,

—=alv=m0) - kvi(0)
31. Two large tanks, each holding 100 L of liquid, are de — kV,() - R
interconnected by pipes, with the liquid flowing from dr ! 3
. A B
6 L/min 1 3 L/min
0.2 kg/L x(1) —_ y(@®)
100 L 100 L
4 L/min x(0)=0kg  — y(0) =20 kg 2 L/min
1 L/min

Figure 5.2 Mixing problem for interconnected tanks
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Figure 5.3 Feedback system with pooling delay

(b) Find a general solution for the system in part (a)
when & = 5 (min)~!, V=20L, K = 2 (min) "',
and R; = 10 L/min.

(c) Using the general solution obtained in part (b),
what can be said about the volume of fluid in
each of the tanks as r — +00?

A house, for cooling purposes, consists of two
zones: the attic area zone A and the living area zone
B (see Figure 5.4). The living area is cooled by a
2-ton air conditioning unit that removes 24,000 Btu/hr.
The heat capacity of zone B is 1/2°F per thousand
Btu. The time constant for heat transfer between
zone A and the outside is 2 hr, between zone B and
the outside is 4 hr, and between the two zones is 4 hr.
If the outside temperature stays at 100°F, how warm
does it eventually get in the attic zone A? (Heating
and cooling of buildings was treated in Section 3.3.)
A building consists of two zones A and B (see
Figure 5.5). Only zone A is heated by a furnace,
which generates 80,000 Btu/hr. The heat capacity of
zone A is 1/4°F per thousand Btu. The time constant
for heat transfer between zone A and the outside is 4 hr,

2 hr

[ '] 124,000 Btu/hr

vilnsy,
ALy
N\

Figure 5.4 Air-conditioned house with attic

4 hr

37.

38.

39.

Introduction to Systems and Phase Plane Analysis

x(1) 2 hr y(® 5 hr

Figure 5.5 Two-zone building with one zone heated

between the unheated zone B and the outside is 5 hr,
and between the two zones is 2 hr. If the outside
temperature stays at 0°F, how cold does it eventually
get in the unheated zone B?

In Problem 36, if a small furnace that generates 1000
Btu/hr is placed in zone B, determine the coldest it
would eventually get in zone B if zone B has a heat
capacity of 2°F per thousand Btu.

Arms Race. A simplified mathematical model for
an arms race between two countries whose expendi-
tures for defense are expressed by the variables x(¢)
and y(¢) is given by the linear system

dx _ . _
dt—2y x+a; x(0) =1,
dy

E—4x—3y+b, y(O)—4,

where a and b are constants that measure the trust (or
distrust) each country has for the other. Determine
whether there is going to be disarmament (x and y
approach 0 as ¢ increases), a stabilized arms race
(x and y approach a constant as 1 — + o0), or a run-
away arms race (x and y approach +o0 as t — +00).

Let A, B, and C represent three linear differential
operators with constant coefficients; for example,
A= a,D* + a;D + ay, B= b,D> + b,D + b,
C=c,D*> + ¢;D + ¢,
where the a’s, b’s, and ¢’s are constants. Verify the
following propelrties:T
(a) Commutative laws:
A+B=B+A,
AB = BA .
(b) Associative laws:
(A+B)+C=A4+ (B+C),
(AB)C = A(BC) .
(¢) Distributive law: A(B + C) = AB + AC .

"We say that two operators A and B are equal if A[y] = Bly] for all functions y with the necessary derivatives.
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SOLVING SYSTEMS AND HIGHER-ORDER
5. EQUATIONS NUMERICALLY

Although we studied a half-dozen analytic methods for obtaining solutions to first-order ordi-
nary differential equations in Chapter 2, the techniques for higher-order equations, or systems
of equations, are much more limited. Chapter 4 focused on solving the linear constant-
coefficient second-order equation. The elimination method of the previous section is also
restricted to constant-coefficient systems. And, indeed, higher-order linear constant-coefficient
equations and systems can be solved analytically by extensions of these methods, as we will
see in Chapters 6, 7, and 9.

However, if the equations—even a single second-order linear equation—have variable
coefficients, the solution process is much less satisfactory. As will be seen in Chapter 8, the
solutions are expressed as infinite series, and their computation can be very laborious (with the
notable exception of the Cauchy—Euler, or equidimensional, equation). And we know virtually
nothing about how to obtain exact solutions to nonlinear second-order equations.

Fortunately, all the cases that arise (constant or variable coefficients, nonlinear, higher-
order equations or systems) can be addressed by a single formulation that lends itself to a mul-
titude of numerical approaches. In this section we’ll see how to express differential equations
as a system in normal form and then show how the basic Euler method for computer solution
can be easily “vectorized” to apply to such systems. Although subsequent chapters will return
to analytic solution methods, the vectorized version of the Euler technique or the more efficient
Runge—Kutta technique will hereafter be available as fallback methods for numerical explo-
ration of intractable problems.

Normal Form

A system of m differential equations in the m unknown functions x;(t), x,(?), . . . , x,,(t) expressed
as

x,l(t) :fl(t’ X1, X5 - - - ’xm) s
(1) X’z(l’) ?fZ(t’ X5 X250 v s xm) 5

)C;”(f) :fm(t’ X1 X2 o v v s xm)

is said to be in normal form. Notice that (1) consists of m first-order equations that collec-
tively look like a vectorized version of the single generic first-order equation

(2) x'=flt, %),

and that the system expressed in equation (1) of Section 5.1 takes this form, as do equations (1)
and (14) in Section 5.2. An initial value problem for (1) entails finding a solution to this system
that satisfies the initial conditions

x1(to) = ar, xltp) = ay, ..., x,(t) = a,

for prescribed values 1y, ay, ay, . . . , a,,.

The importance of the normal form is underscored by the fact that most professional codes
for initial value problems presume that the system is written in this form. Furthermore, for a
linear system in normal form, the powerful machinery of linear algebra can be readily applied.
[Indeed, in Chapter 9 we will show how the solutions x() = ce® of the simple equation
x" = ax can be generalized to constant-coefficient systems in normal form.]
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For these reasons it is gratifying to note that a (single) higher-order equation can always be
converted to an equivalent system of first-order equations.
To convert an mth-order differential equation

G ) = flry s ymY)
into a first-order system, we introduce, as additional unknowns, the sequence of derivatives of y:
x(0) =y, x0):=y'0), ..., x,0):=y"""0) .
With this scheme, we obtain m — 1 first-order equations quite trivially:
xi(t) =y'(t) = x2(0) ,
) xi(t) = y"(t) = x3(0) ,

xppoat) = 3" V(0) = x(e) .

The mth and final equation then constitutes a restatement of the original equation (3) in terms
of the new unknowns:

(5) xr,n(t) = y<,n)(t> =f<t’ X1 X2 - - - 5xm) .
If equation (3) has initial conditions y(t)) = ay,y'(ty) = aa. . . . ,y(’"_')(to) = a,, then the

system (4)—(5) has initial conditions x,(fy) = ay, x,(tp) = ay, . . ., x,,(ty) = a,,.

Convert the initial value problem
(6) y'(t) + 3ty'(t) + y(¢)* = sin¢; y(0)=1, y(0)=5
into an initial value problem for a system in normal form.
We first express the differential equation in (6) as
y'(t) = =31y'(r) — y(¢)* + sint .
Setting x;(¢) := y(¢) and x,(¢) : = y'(¢), we obtain
xi(0) = x(1) ,
x5(2) = =3mxy(r)— x,(¢)* + sinr .

The initial conditions transform to x;(0) = 1, x,(0) = 5. &

Euler’'s Method for Systems in Normal Form

Recall from Section 1.4 that Euler’s method for solving a single first-order equation (2) is
based on estimating the solution x at time (#, + %) using the approximation

) xlty + h) = x(t0) + hx' (1) = x(to) + hf (16, x(15))

and that as a consequence the algorithm can be summarized by the recursive formulas
t)) thy1=t,+h,

9) Xy =x, + hf(t,x,), n=0,1,2 ...

[compare equations (2) and (3), Section 1.4]. Now we can apply the approximation (7) to each
of the equations in the system (1):

(10)  xiltg + k) = xilto) + hxi(ty) = xi(8) + hfk(lo, x1(to), x2(8g), - - . ’xm(ZO)) )
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and fork = 1, 2, . .. m, we are led to the recursive formulas

(11)  ty =t,+h ,

Xin+l = Xl + hfl(tm Xions Xm0+« + s xm;n) ’
(12) X2:n+1 : X2:n + hfZ(tm Xl X250 -+« 5 xm;n) >
xm;n+1 = xm;n + hfm(tm xl;na x2;n7 e xm;n) (n = 07 1= 2’ . ) .

Here we are burdened with the ungainly notation x,,., for the approximation to the value of the
pth-function x,, at time ¢ = £, + nh; i.e., x

i = xp(to + nh). However, if we treat the unknowns
and right-hand members of (1) as components of vectors

x(1): = [x(0), (1), .. x(0)]
f(l, X) = [ 1(t, Xpy Xoy oo ,xm),fz(t, Xiy Xoy oo ,xm), . ,fm(t, Xp, Xoy oo ,xm)] ,

then (12) can be expressed in the much neater form

(13) Xp+1 = Xp + hf(tm Xn) :

Use the vectorized Euler method with step size 2 = 0.1 to find an approximation for the solu-
tion to the initial value problem

(14) ') +4y' (@) +3y() =0.  y0)=15, y(0)=-25,

on the interval [0, 1].

For the given step size, the method will yield approximations for y(0.1), y(0.2), ..., y(1.0). To
apply the vectorized Euler method to (14), we first convert it to normal form. Setting x; = y
and x, = y’, we obtain the system

xl' = X2; xl(O) =15 .
(15)
X = —4x, — 3x;  x(0)=-25.

Comparing (15) with (1) we see that f,(z, x;, x,) = x, and f(1, x;, x,) = —4x, — 3x;.
With the starting values of 1, = 0, x;,0 = 1.5, and x,,y = —2.5, we compute

x1(0.1) = xp. = xp0 + hxyg = 1.5 + 0.1(=2.5) = 1.25 ,

%2(0.1) = x5, = x99 + h(—4x29 — 3x1,9) = —2.5 + 0.1[—4(—2.5) — 3-1.5] = —1.95 ;

X

X

1(0.2) = x15 = x1. + hxyy = 1.25 + 0.1(=1.95) = 1.055 ,

2(0.2) = x5 = X9 + h(=4x5. — 3x) = —1.95 + 0.1[ —4(—1.95) — 3-1.25] = —1.545 .

Continuing the algorithm we compute the remaining values. These are listed in Table 5.1
on page 256, along with the exact values calculated via the methods of Chapter 4. Note that the
X,. , column gives approximations to y'(¢), since x,(f) = y'(r). #
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Approximations of the Solution to (14) in Example 2
t =n(0.1) X1 y Exact X2 y" Exact

0 1.5 1.5 =25 —-2.5
0.1 1.25 1.275246528 —1.95 —2.016064749
0.2 1.055 1.093136571 —1.545 —1.641948207
0.3 0.9005 0.944103051 —1.2435 —1.35067271
0.4 0.77615 0.820917152 —1.01625 —1.122111364
0.5 0.674525 0.71809574 —0.842595 —0.9412259
0.6 0.5902655 0.63146108 —0.7079145 —0.796759968
0.7 0.51947405 0.557813518 —0.60182835 —0.680269946
0.8 0.459291215 0.494687941 —0.516939225 —0.585405894
0.9 0.407597293 0.440172416 —0.4479509 —0.507377929
1 0.362802203 0.392772975 —0.391049727 —0.442560044

Euler’s method is modestly accurate for this problem with a step size of 4 = 0.1. The next
example demonstrates the effects of using a sequence of smaller values of A to improve the
accuracy.

For the initial value problem of Example 2, use Euler’s method to estimate y(1) for succes-
sively halved step sizes 7 = 0.1, 0.05, 0.025, 0.0125, 0.00625.

Using the same scheme as in Example 2, we find the following approximations, denoted by
v(1;h) (obtained with step size h):

h | 01 | 005 | 0025 | 00125 | 0.00625
y(13h) | 0.36280 | 0.37787 | 0.38535 | 0.38907 | 0.39092

[Recall that the exact value, rounded to 5 decimal places, is y(1) = 0.39277.] &

The Runge—Kutta scheme described in Section 3.7 is easy to vectorize also; details are
given on the following page. As would be expected, its performance is considerably more
accurate, yielding five-decimal agreement with the exact solution for a step size of 0.05:

h | 0.0 | 005 | 0025 | 00125 |0.00625
y(Ish) [ 039278 | 039277 | 0.39277 | 039277 | 0.39277

As in Section 3.7, both algorithms can be coded so as to repeat the calculation of y(1) with
a sequence of smaller step sizes until two consecutive estimates agree to within some prespeci-
fied tolerance &. Here one should interpret “two estimates agree to within &” to mean that each
component of the successive vector approximants [i.e., approximants to y(1) and y’(1)] should
agree to within e.

An Application to Population Dynamics

A mathematical model for the population dynamics of competing species, one a predator with
population x,(¢) and the other its prey with population x,(¢), was developed independently in the
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early 1900s by A. J. Lotka and V. Volterra. It assumes that there is plenty of food available for the
prey to eat, so the birthrate of the prey should follow the Malthusian or exponential law (see Sec-
tion 3.2); that is, the birthrate of the prey is Ax;, where A is a positive constant. The death rate of
the prey depends on the number of interactions between the predators and the prey. This is mod-
eled by the expression Bx;x,, where B is a positive constant. Therefore, the rate of change in the
population of the prey per unit time is dx,/dt = Ax, — Bx;x,. Assuming that the predators
depend entirely on the prey for their food, it is argued that the birthrate of the predators depends
on the number of interactions with the prey; that is, the birthrate of predators is Dx;x,, where D is
a positive constant. The death rate of the predators is assumed to be Cx, because without food the
population would die off at a rate proportional to the population present. Hence, the rate of
change in the population of predators per unit time is dx,/dt = —Cx, + Dx;x,. Combining these
two equations, we obtain the Volterra—Lotka system for the population dynamics of two compet-
ing species:

X1 = Ax; — Bx1x, ,

(16)
—Cx2 + Dxle .

i
X2
Such systems are in general not explicitly solvable. In the following example, we obtain

an approximate solution for such a system by utilizing the vectorized form of the Runge—Kutta

algorithm.
For the system of two equations

xi = filt. x1, x,)
X3 :fz(fa Xlaxz) ,

with initial conditions x,(f,) = X100 x5(fp) = X5, the vectorized form of the Runge—Kutta
recursive equations (cf. (14), page 134) becomes

o1 =t, +h (n=0,1,2,...),
: 1
a7 Xipt+1 =Xy T g(kl,l + 2k + 2k 5 + kyg)
. 1
Xoy1 = Xoyy + g(kz,l + 2kyy + 2kyz + ko)

where £ is the step size and, for i = 1 and 2,

hﬁ tm X1, ne x2 n) ’

(
(18) 12 - IEtn xl;n + %kl,l’ -x2;n + %kZ,l) 5

— 1 1
=nfi{t, + 2 xp + k12 Xou gkz.z) :

(kia = hfilt, X F kig, KXo+ ko3)

It is important to note that both k; ; and k,; must be computed before either k; ; or k;,.
Similarly, both k; , and k,, are needed to compute k; 3 and k3, etc. In Appendix F, program
outlines are given for applying the method to graph approximate solutions over a specified
interval [t(), t]] or to obtain approximations of the solutions at a specified point to within a
desired tolerance.
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Use the classical fourth-order Runge—Kutta algorithm for systems to approximate the solution
of the initial value problem

(19) X =2x; — 2x1x5 x(0)=1,
Xy = XXy < Xy Xz(o) =3

at ¢+ = 1. Starting with 2 = 1, continue halving the step size until two successive approxima-
tions of x;(1) and of x,(1) differ by at most 0.0001.

Here .fl (t,xl,xz) = 2X1 - 2X1X2 and _fz(l,xl,XQ) = XXy — Xp. With the inputs t() = O,
x1.0 = 1, x50 = 3, we proceed with the algorithm to compute x;(1; 1) and x,(1; 1), the approxi-
mations to x,(1), x,(1) using & = 1. We find from the formulas in (18) that

k1,1 = (2x1;0 - 2x1;0x2;0) = 2(1) - 2(1)(3) = -4,

(x1:0%250 = X20) = (1)(3) =3 =0,

ki, = h[z(xl;o + %kl,l) - 2(x1;0 + %kl,l) (xz;o + %kll)]
[

1+ %(—4)} — 2[1 + %(_4)][3 + %(0)]
=-2+203)=4,

ky, = h[ (xl;O + %kl,l) (XZ;O + %kll) N (xw + %km)]
= [1+3(=9][3 +50)] - [3 + 3(0)]

~ (-1)B) -3 =6,

=2

and similarly we compute

ks = h[2(xi0 + k1) = 2(x10 + k1) (120 + 2h22) | = 6 .

[

kys = h[ X0 + %km) (xz;o + %kz,z) - (xz;o + %km)] =0,
[
[

kpa=h (xl;o + k1,3)(x2;0 + k2,3) - (xz;o + k2,3)] = —18 .

Inserting these values into formula (17), we get
Xy = X0 T é(ku + 2kyp + 2k 5 + k)
=1+é(—4+8+12—28)=—1 ,
Xo;1 = Xop0 T é(kll + 2kyy + 2k + kay)
=3+é(0—12+0+18)=4,

as the respective approximations to x;(1) and x,(1).
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Repeating the algorithm with & = 1/2 (N = 2) we obtain the approximations x,;(1;27")
and x,(1;27") for x,(1) and x,(1). In Table 5.2, we list the approximations x,(1;2~") and
x5(1; 27™) for x;(1) and x,(1) using step size h = 27" form = 0, 1, 2, 3, and 4. We stopped at
m = 4, since both

1x(1;273) = x,(1;27%)] = 0.00006 < 0.0001

and

1x,(1;273) — x,(1; 27%)] = 0.00001 < 0.0001 .

Hence, x;(1) = 0.07735 and x,(1) =~ 1.46445, with tolerance 0.0001. #

1A RS2 Approximations of the Solution to System (19)
in Example 4

m h xl(l;h) x,(1; h)
0 1.0 —1.0 4.0

1 0.5 0.14662 1.47356
2 0.25 0.07885 1.46469
3 0.125 0.07741 1.46446
4 0.0625 0.07735 1.46445

To get a better feel for the solution to system (19), we have graphed in Figure 5.6 an
approximation of the solution for 0 = ¢ = 12, using linear interpolation to connect the vector-
ized Runge—Kutta approximants for the points + = 0, 0.125, 0.25, . . ., 12.0 (i.e., with
h = 0.125). From the graph it appears that the components x; and x, are periodic in the variable 7.
Phase plane analysis is used in Section 5.5 to show that, indeed, Volterra-Lotka equations have
periodic solutions.

—tttt—t+——+—+——+—+—+—+—
o 1 2 3 4 5 6 7 8 9 10 11 12

Figure 5.6 Graphs of the components of an approximate solution to the Volterra—Lotka system (17)
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5.3 EXERCISES

In Problems 1-7, convert the given initial value problem
into an initial value problem for a system in normal form.

Loy"(0) + 1y (e) = 3y(1) = £ ;
y0)=3. y(0)=-6

2. y"(1) = cos(t — y) + y*(1) ;

)=1. (0 =0

(1) — y(3) 1) + 7y(t) = cost ;

o) =y =1, y0©=0, yJo=2
4. Y = [y()] = sin(y() + e ;
y(0) = y'(0) = - =y50) =0
5. x"+y—x"=2t; x(3)=5, X'(3): ,
Y'—x+y =-1; y3) =1, y@B)=-1
[Hint: Setx;=x , x,=x", x3=y, x4=Y".]

6.3x"+5x—2y =0; x(0)=-1, x'(0)=0,
4y"+2y—6x=0; y0)=1, y(0)=2

7.x" —y=t; x(0) = x'(0) = x"(0) = 4,
2"+ 5y =2y=1;  y(0)=y'(0) =

8. Sturm-Liouville Form. A second-order equation

is said to be in Sturm-Liouville form if it is
expressed as

[p()y' ()] + q(e)y(2) = 0 .

Show that the substitutions x; = y, x, = py’ result
in the normal form

If y(0) = a and y'(0) = b are the initial values for the
Sturm-Liouville problem, what are x,(0) and x,(0)?

9. In Section 3.6, we discussed the improved Euler’s
method for approximating the solution to a first-
order equation. Extend this method to normal sys-
tems and give the recursive formulas for solving the
initial value problem.

In Problems 1013, use the vectorized Euler method with
h = 0.25 to find an approximation for the solution to the
given initial value problem on the specified interval.
10. y" +ty' +y =0

y0) =1, y'(0)=0 on[0,1]

11.

1L+ +y —y=0;

y0)=1, y(0)=-1 on[0,1]
12. 15" +y=1t+2;

y(1)=1, y(1)=-1 on[1,2]

y”=t2—y2;

13.

y0)=0, ' (0)=1 onf0,1]
(Can you guess the solution?)

In Problems 14-24, you will need a computer and a pro-
grammed version of the vectorized classical fourth-order
Runge—Kutta algorithm. (At the instructor’s discretion,
other algorithms may be used.)"

14.

15.

16.

17.

Using the vectorized Runge—Kutta algorithm with
h = 0.5, approximate the solution to the initial value
problem

37y = 51y + 5y =0 ;

y1)=0., y(1)=

at t = 8. Compare this approximation to the actual

solution y(z) = B -t

SSEN )

Using the vectorized Runge—Kutta algorithm, ap-

proximate the solution to the initial value problem
Y=+t y(0)=1, y'(0)=0

at r = 1. Starting with & = 1, continue halving the

step size until two successive approximations [of
both y(1) and y'(1)] differ by at most 0.01.

Using the vectorized Runge—Kutta algorithm for
systems with 2z = 0.125, approximate the solution to
the initial value problem

X' =2x—y; x(0) =0,

y' =3x+ 6y ; y(0) = —2
at t+ = 1. Compare this approximation to the actual
solution

x(f) = > — e, y(f) = ¥ — 3e™ |

Using the vectorized Runge—Kutta algorithm, ap-
proximate the solution to the initial value problem
du B . _
dx_3u 4u ; u(O)—l,
dv B ) _
g = 20— 3v v(0) =1

fAn applet, maintained on the Web at http://alamos.math.arizona.edu/~rychlik/JOde/index.html, automates most of
the differential equation algorithms discussed in this book.
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at x = 1. Starting with 7 = 1, continue halving the
step size until two successive approximations of
u(1) and v(1) differ by at most 0.001.

Combat Model. A simplified mathematical model
for conventional versus guerrilla combat is given by
the system

where x; and x, are the strengths of guerrilla and
conventional troops, respectively, and 0.1 and 1 are
the combat effectiveness coefficients. Who will win
the conflict: the conventional troops or the guerril-
las? [Hint: Use the vectorized Runge—Kutta algo-
rithm for systems with 4 = 0.1 to approximate the
solutions. ]

Predator—Prey Model. The Volterra—Lotka predator—
prey model predicts some rather interesting behavior
that is evident in certain biological systems. For
example, suppose you fix the initial population of
prey but increase the initial population of predators.
Then the population cycle for the prey becomes
more severe in the sense that there is a long period of
time with a reduced population of prey followed by
a short period when the population of prey is very
large. To demonstrate this behavior, use the vector-
ized Runge—Kutta algorithm for systems with 7 =
0.5 to approximate the populations of prey x and of
predators y over the period [0, 5} that satisfy the
Volterra—Lotka system

¥ =x(3-y),
y' =yl —3)

under each of the following initial conditions:
(@ x(0) =2, y0)=4.
(b) x(0) =2, y(0)=>5.
(© x(0)=2, y(0)=7.

In Group Project C of Chapter 4, it was shown that
the simple pendulum equation

0"(t) + sinf(r) = 0

has periodic solutions when the initial displacement
and velocity are small. Show that the period of the
solution may depend on the initial conditions by
using the vectorized Runge—Kutta algorithm with

21.

22,

23.

24,

h = 0.02 to approximate the solutions to the
simple pendulum problem on [O, 4] for the
initial conditions:

(@ 00)=01, 0(0)=0.
() 6(0) =05, 6'(0)=0.
() 6(0)=10, 6(0)=0.

[Hint: Approximate the length of time it takes
to reach —6(0).]

Fluid Ejection.
treatment plant, the following equation arises:

In the design of a sewage
+

60 — H = (77.7)H" + (19.42)(H')? ;
H(0) = H'(0) =0 ,

where H is the level of the fluid in an ejection
chamber and ¢ is the time in seconds. Use the
vectorized Runge—Kutta algorithm with & =
0.5 to approximate H(r) over the interval
[0,5].

Oscillations and Nonlinear Equations. For
the initial value problem

X"+ (0.1)(1 —x*)x"+x=0;
x(0) = x, , x'(0)=0,

use the vectorized Runge—Kutta algorithm with
h = 0.02 to illustrate that as ¢ increases from 0
to 20, the solution x exhibits damped oscilla-
tions when x, = 1, whereas x exhibits expand-
ing oscillations when x;, = 2.1.

Nonlinear Spring. The Duffing equation
Y +y+ri=0,

where r is a constant, is a model for the vibra-
tions of a mass attached to a nonlinear spring.
For this model, does the period of vibration
vary as the parameter r is varied? Does the
period vary as the initial conditions are varied?
[Hint: Use the vectorized Runge—Kutta algo-
rithm with 4 = 0.1 to approximate the solutions
for r = 1 and 2, with initial conditions
y(0) = a,y'(0) = 0fora = 1,2, and 3.]

Pendulum with Varying Length. A pendu-
lum is formed by a mass m attached to the end
of a wire that is attached to the ceiling. Assume
that the length I(¢) of the wire varies with time
in some predetermined fashion. If 6(¢) is the

"See Numerical Solution of Differential Equations, by William Milne (Dover, New York, 1970), p. 82.
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angle between the pendulum and the vertical, then
the motion of the pendulum is governed by the ini-
tial value problem

(1) (1) + 20(e)1" (1)’ (¢ ) +gl(1)o(r) = 0
)

6(0) = 6, , 6'(0) =

where g is the acceleration due to gravity. Assume
that

Iy + 15 cos(wr —

(1) = ) .

where /; is much smaller than /,. (This might be a
model for a person on a swing, where the pumping
action changes the distance from the center of mass
of the swing to the point where the swing is
attached.) To simplify the computations, take g = 1.
Using the Runge-Kutta algorithm with 2 = 0.1,
study the motion of the pendulum when 6, = 0.5,

=0,lp=1,11=0.1, w = 1, and ¢ = 0.02. In
pamcular, does the pendulum ever attain an angle
greater in absolute value than the initial angle 6,?
Does the total arc traversed during one-half of a
swing ever exceed 1?

In Problems 25-30, use a software package or the SUB-
ROUTINE in Appendix F.

25.

26.

27.

Using the Runge—Kutta algorithm for systems with
h = 0.05, approximate the solution to the initial
value problem

n

Y'Y+ y? ;
y0)=1,
atr = 1.

Use the Runge—Kutta algorithm for systems with
h = 0.1 to approximate the solution to the initial
value problem

x'=yz; x(O)Z(),
e 01,
7= —xy/2 ; 20)=1,

atr = 1.

Generalized Blasius Equation. H. Blasius, in his
study of laminar flow of a fluid, encountered an
equation of the form

YAy = ()P -1

Use the Runge—Kutta algorithm for systems with
h = 0.1 to approximate the solution that satisfies

28.

29.

Introduction to Systems and Phase Plane Analysis

the initial conditions y(0) = 0,y'(0) = 0, and
y"(0) = 1.32824. Sketch this solution on the inter-
val [0,2].

Lunar Orbit. The motion of a moon moving in a
planar orbit about a planet is governed by the equations

dzy

dr? P37 dr? r3

d*x mx

where = (x* + yz)l/z, G 1is the gravitational con-

stant, and m is the mass of the moon. Assume Gm = 1.

When x(0) = 1,x'(0) = y(0) = 0, and y'(0) = 1,

the motion is a circular orbit of radius 1 and period 27r.

(a) Setting x;=x, x, =x', x3=y, x4 =Y,
express the governing equations as a first-order
system in normal form.

(b) Using h = 27r/100 = 0.0628318, compute one
orbit of this moon (i.e., do N = 100 steps?). Do
your approximations agree with the fact that the
orbit is a circle of radius 17?

Competing Species. Let p;(¢) denote, respectively,
the populations of three competing species S;, i = 1,
2, 3. Suppose these species have the same growth
rates, and the maximum population that the habitat
can support is the same for each species. (We
assume it to be one unit.) Also suppose the competi-
tive advantage that S; has over S, is the same as that
of S, over S5 and S5 over §;. This situation is mod-
eled by the system

= Pl(l — P17 apy — bp3) )
=po(1 = bp; — py — ap3) )
s =ps(1 —apy — bpy — p3)

=

’
1
’
2

TS

where a and b are positive constants. To demonstrate
the population dynamics of this system whena = b =
0.5, use the Runge—Kautta algorithm for systems with
h = 0.1 to approximate the populations p; over the
time interval [0, 10] under each of the following
initial conditions:

@ pi(0)=1.0, p,(0)=0.1, p3(0)=0.1
() p1(0)=0.1, p,(0)=1.0, p3(0)=0.1
(© pi(0)=0.1, py(0)=0.1, p;3(0)=10.

On the basis of the results of parts (a)—(c), decide
what you think will happen to these populations as
t— + oo.
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30. Spring Pendulum. Let a mass be attached to one Assume g = 1, k = m = 1, and [, = 4. When the
end of a spring with spring constant £ and the other system is at rest, [ = [, + mg/k = 5.
end attached to the ceiling. Let [, be the natural (a) Describe the motion of the pendulum when

length of the spring and let /() be its length at time . 1(0) = 5.5,7'(0) = 0,6(0) = 0, and 6'(0) = 0.
If 6(¢) is the angle between the pendulum and the
vertical, then the motion of the spring pendulum is
governed by the system

(b) When the pendulum is both stretched and given
an angular displacement, the motion of the
pendulum is more complicated. Using the
Runge—Kutta algorithm for systems with & =

k
1"(t) — 1(£)0'(t) — g cos O(r) + ;(l —1p) =0, 0.1 to approximate the solution, sketch the
graphs of the length / and the angular displace-
1%(1)0"(¢) + 21(2)I'(1)0"(¢) + gl(¢) sin 6(z) = 0 . ment @ on the interval [0, 10] if /(0) = 5.5,

1'(0) = 0, 6(0) = 0.5, and 6'(0) = 0.

5.4 INTRODUCTION TO THE PHASE PLANE

In this section, we study systems of two first-order equations of the form

d

d% =fx,y),
@ p

d% =g(x,y) .

Note that the independent variable ¢ does not appear in the right-hand terms f(x, y) and g(x, y);
such systems are called autonomous. For example, the system that modeled the intercon-
nected tanks problem in Section 5.1,

A TS B
x = 3x+12}’
1 1

is autonomous. So is the Volterra—Lotka system,
x" = Ax — Bxy ,
y'=—Cy + Dxy ,

(with A, B, C, D constants), which was discussed in Example 4 of Section 5.3 as a model for
population dynamics.

For future reference, we note that the solutions to autonomous systems have a “time-shift
immunity,” in the sense that if the pair x(¢), y(z) solves (1), so does the time-shifted pair
x(t + ¢), y(t + ) for any constant c. Specifically, if we let X(¢) == x(t + ¢) and Y(¢) == y(¢ + ¢),

then by the chain rule
X () = B+ ) = fxle + ) yle + ©) = £X(), ()
dr dr : ) SR 2]
dy . dy

LU0 = 2o+ 0) = gl + oyle + ) = gx(0. V()

proving that X(z), Y(¢) is also a solution to (1).
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Since ¢ does not appear explicitly in the system (1), it is certainly tempting to divide the
two equations, invoke the chain rule

dy  dy/dt

dx  dx/dt’
and consider the single first-order differential equation
o . glx,y)

dx  f(x,y)

We will refer to (2) as the phase plane equation. In Chapters 1 and 2 we mastered several
approaches to equations like (2): the use of direction fields to visualize the solution graphs,
and the analytic techniques for the cases of separability, linearity, exactness, etc.

So the form (2) certainly has advantages over (1), but it is important to maintain our
perspective by noting these distinctions:

(i) A solution to the original problem (1) is a pair of functions of ~—namely, x(¢) and
y(t)—that satisfies (1) for all 7 in some interval 1. These functions can be visualized
as a pair of graphs, as in Figure 5.7. If, in the xy-plane, we plot the points (x(t), y(t))
as ¢ varies over /, the resulting curve is known as the trajectory of the solution pair
x(2), y(¢), and the xy-plane is called the phase plane in this context (see Figure 5.8 on
page 265). Note, however, that the trajectory in this plane contains less information
than the original graphs, because the -dependence has been suppressed. (Typically,
though, we indicate the direction of time with an arrow on the curve.) In principle we
can construct, point by point, the trajectory from the solution graphs, but we cannot
reconstruct the solution graphs from the phase plane trajectory alone (because we
would not know what value of 7 to assign to each point).

(ii) Nonetheless, the slope dy/dx of a trajectory in the phase plane is given by the right-
hand side of (2). So, in solving equation (2) we are indeed locating the trajectories of
the system (1) in the phase plane. More precisely, we have shown that the trajectories
satisfy equation (2), and thus lie on its solution curves.

(ii1) In Chapters 1 and 2, we regarded x as the independent variable and y as the depen-
dent variable, in equations of the form (2). This is no longer true in the context of the
system (1); x and y are both dependent variables on an equal footing, and ¢ is the
independent variable.

Thus, it appears that a phase plane portrait may be a useful, albeit incomplete, tool for analyz-
ing first-order autonomous systems like (1).

x() y()

7 1y 13 1 1y 13

Figure 5.7 Solution pair for system (1)



Example 1

Section 5.4 Introduction to the Phase Plane 265

(x(t3). (1))

(x(t ), y(r )
(x(t3), ¥(13))

Figure 5.8 Phase plane trajectory of the solution pair for system (1)

Except for the very special case of linear systems with constant coefficients that was dis-
cussed in Section 5.2, finding all solutions to the system (1) is generally an impossible task.
But it is relatively easy to find constant solutions; if f(x, yo) = 0 and g(x, yo) = 0, then the
constant functions x(7) = x,, y(t) = y, solve (1). For such solutions the following terminology
is used.

Critical Points and Equilibrium Solutions

Definition 1. A point (x, y,) where f(xq, o) = 0 and g(x, yo) = 0 is called a eritical
point, or equilibrium point, of the system dx/dt = f(x, y), dy/dt = g(x, y), and the
corresponding constant solution x(f) = x,, y(t) = y, is called an equilibrium solution.
The set of all critical points is called the critical point set.

Notice that trajectories of equilibrium solutions consist of just single points (the equilib-
rium points). But what can be said about the other trajectories? Can we predict any of their
features from closer examination of the equilibrium points? To explore this we focus on the
phase plane equation (2) and exploit its direction field (recall Section 1.3, page 15). However,
we’ll augment the direction field plot by attaching arrowheads to the line segments, indicating
the direction of the “flow” of solutions as 7 increases. This is easy: When dx/dt is positive, x(t)
increases so the trajectory flows to the right. Therefore, according to (1), all direction field seg-
ments drawn in a region where f(x, y) is positive should point to the right [and, of course, they
point to the left if f(x, y) is negative]. If f(x, y) is zero, we can use g(x, y) to decide if the flow
is upward [ y(¢) increases] or downward [y(t) decreases]. [What if both f(x,y) and g(x, v) are
zero?]

In the examples that follow, one can use computers or calculators for generating these
direction fields.

Sketch the direction field in the phase plane for the system

x_
dt ’
3 p
y _— —_—
dr 2y

and identify its critical point.
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Figure 5.9 Direction field for Example 1 Figure 5.10 Trajectories for Example 1

Here f(x,y) = —xand g(x, y) = —2y are both zero when x = y = 0, so (0, 0) is the critical
point. The direction field for the phase plane equation
dy —2y 2
@ dx —x x
is given in Figure 5.9. Since dx/dt = —x in (3), trajectories in the right half-plane (where

x > 0) flow to the left, and vice versa. From the figure we can see that all solutions “flow into”
the critical point (0, 0). Such a critical point is called asymptotically stable.” ¢

Remark. For this simple example, we can actually solve the system (3) explicitly; indeed,
(3) constitutes an uncoupled pair of linear equations whose solutions are x(f) = c;e " and
y(t) = c,e % By elimination of #, we obtain the equation y = c,e "% = ¢, [x(1)/c|]* = ex°.
So the trajectories lie along the parabolas y = cx?. [Alternatively, we could have separated
variables in (4) and identified these parabolas as the phase plane solution curves.] Notice that
each such parabola is made up of three trajectories: an incoming trajectory approaching
the origin in the right half-plane; its mirror-image trajectory approaching the origin in the
left half-plane; and the origin itself, an equilibrium point. Sample trajectories are indicated

in Figure 5.10.

Sketch the direction field in the phase plane for the system

@:

dt *o
Q)

b _

a7

and describe the behavior of solutions near the critical point (0, 0).

This example is almost identical to the previous one; in fact, one could say we have merely
“reversed time” in (3). The direction field segments for

dy 2y
©) dx  x
are the same as those of (4), but the direction arrows are reversed. Now all solutions flow away
from the critical point (0, 0); the equilibrium is unstable. #

See Section 12.3 for a rigorous exposition of stability and critical points. All references to Chapters 1113 refer to the
expanded text Fundamentals of Differential Equations and Boundary Value Problems, 6th ed.



Example 3

Solution

Section 5.4 Introduction to the Phase Plane 267

ad
)

Figure 5.11 Direction field and trajectories for Example 3

For the system (7) below, find the critical points, sketch the direction field in the phase
plane, and predict the asymptotic nature (i.e., behavior as t — +00) of the solution starting
atx =2,y =0whenr=0.

%=5x—3y—2,
@)

ﬂ=4 —3y—1

i X v .

The only critical point is the solution of the simultaneous equations f(x, y) = g(x,y) = 0:
S5xg—3yp—2=0,
4xg — 3y — 1 =0,

from which we find x, = y, = 1. The direction field for the phase plane equation

ﬂ A =3y —1

dx 5x—3y—2

®)

&)

is shown in Figure 5.11, with some trajectories rough-sketched in by hand.” Note that solutions
flow to the right for 5x — 3y — 2 > 0, i.e., for all points below the line 5x — 3y — 2 = 0.

The phase plane solution curve passing through (2, 0) in Figure 5.11 apparently extends to
infinity. Does this imply the corresponding system solution x(t), y(¢) also approaches infinity in the
sense that |x(¢)| + |y(¢)| = +o0 as t — + 00, or could its trajectory “stall” at some point along
the phase plane solution curve, or possibly even “backtrack”? It cannot backtrack, because the
direction arrows along the trajectory point, unambiguously, to the right. And if (x(t), y(t)) stalls at
some point (x,, y;), then intuitively we would conclude that (x,, y,) was an equilibrium point
(since the “speeds” dx/dt and dy/dt would approach zero there). But we have already found the
only critical point. So we conclude, with a high degree of confidence,” that the system solution
does indeed go to infinity.

"The phase plane solution curves could be obtained analytically by solving equation (9) using the methods of Section 2.6.

"These informal arguments are made more rigorous in Chapter 12. All references to Chapters 11-13 refer to the
expanded text Fundamentals of Differential Equations and Boundary Value Problems, 6th edition.
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The critical point (1, 1) is unstable because, although many solutions get arbitrarily close
to (1, 1), most of them eventually flow away. Solutions that lie on the line y = 2x — 1, how-
ever, do converge to (1, 1). Such an equilibrium is an example of a saddle point.

In the preceding example, we informally argued that if a trajectory ‘“stalls”—that is, if it
has an endpoint—then this endpoint would have to be a critical point. This is more carefully
stated in the following theorem, whose proof is outlined in Problem 30.

Endpoints Are Critical Points

Theorem 1. Let the pair x(z), y(1) be a solution on [0, +00) to the autonomous system
dx/dt = f(x,y), dy/dt = g(x,y), where fand g are continuous in the plane. If the limits
* = |i =
0= lm <o) and -y lim (0
exist and are finite, then the point (x*, y*) is a critical point for the system.

Some typical trajectory configurations near critical points are displayed and classified in
Figure 5.12. These phase plane portraits arise from the systems listed in Problem 29, and can
be generated by software packages having trajectory-sketching options’. A more complete dis-
cussion of the nature of various types of equilibrium solutions and their stability is deferred to

y

x \_D X

N\
7=

Node Spiral Saddle
(asymptotically stable) (unstable) (unstable)
y y y
9 | @» | % |
Center Spiral Node
(stable) (asymptotically stable) (unstable)

Figure 5.12 Examples of different trajectory behaviors near critical point at origin

TAn applet, maintained on the Web at http:/alamos.math.arizona.edu/~rychlik/JOde/index.html, automates most of
the differential equation algorithms discussed in this book.
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Chapter 12.” For the moment, however, notice that unstable critical points are distinguished by
“runaway”’ trajectories emanating from arbitrarily nearby points, while stable equilibria “trap”
all neighboring trajectories. The asymptotically stable critical points attract their neighboring
trajectories as t — +oo.

Historically, the phase plane was introduced to facilitate the analysis of mechanical
systems governed by Newton’s second law, force equals mass times acceleration. An
autonomous mechanical system arises when this force is independent of time and can be mod-
eled by a second-order equation of the form

10) ¥ = flny') .

As we have seen in Section 5.3, this equation can be converted to a normal first-order system
by introducing the velocity v = dy/dt and writing

dy
=y,
11) dt
dv
E - f(y’ U) .

Thus, we can analyze the behavior of an autonomous mechanical system by studying its phase
plane diagram in the yv-plane. Notice that with v as the vertical axis, trajectories é/(t), v(t))
flow to the right in the upper half-plane (where v > 0), and to the left in the lower half-plane.

Sketch the direction field in the phase plane for the first-order system corresponding to the
unforced, undamped mass—spring oscillator described in Section 4.1 (Figure 4.1, page 153).
Sketch several trajectories and interpret them physically.

The equation derived in Section 4.1 for this oscillator is my” + ky = 0 or, equivalently,

y" = —ky/m. Hence, the system (11) takes the form
y=v,
(12) . ky
v = —— .
m

The critical point is at the origin y = v = (. The direction field in Figure 5.13 on page 270 indi-
cates that the trajectories appear to be either closed curves (ellipses?) or spirals that encircle the
critical point.

We saw in Section 4.9 that the undamped oscillator motions are periodic; they cycle
repeatedly through the same sets of points, with the same velocities. Their trajectories in the
phase plane, then, must be closed curves.”” Let’s confirm this mathematically by solving the

phase plane equation
dv ky
(13) b mv

Equation (13) is separable, and we find
w=-"4 a(2) = K (2
vav = T or 2/ m\2)"

TAll references to Chapters 11-13 refer to the expanded text Fundamentals of Differential Equations and Boundary
Value Problems, 6th edition.

"By the same reasoning, underdamped oscillations would correspond to spiral trajectories asymptotically approach-
ing the origin as t — + 0.
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so its solutions are the ellipses v2/2 + ky*/2m

Remark. More generally, we argue that if a solution to an autonomous system like (1) passes
through a point in the phase plane twice and if it is sufficiently well behaved to satisfy a uniqueness
theorem, then the second “tour” satisfies the same initial conditions as the first tour and so must
replicate it. In other words, closed trajectories containing no critical points correspond to periodic

solutions.

<

n field for Example 4

= C as shown in Figure 5.14. The solutions of
(12) are confined to these ellipses and hence flow neither toward nor away from the equilib-
rium solution. The critical point is thus identified as a center in Figure 5.12 on page 268.

Furthermore, the system solutions must continually circulate around the ellipses, since
there are no critical points to stop them. This confirms that all solutions are periodic.

e
&

Figure 5.14 Trajectories for Example 4



Example 5

Solution

Section 5.4 Introduction to the Phase Plane 271

Through these examples we have seen how, by studying the phase plane, one can often
anticipate some of the features (boundedness, periodicity, etc.) of solutions of autonomous
systems without solving them explicitly. Much of this information can be predicted simply
from the critical points and the direction field (oriented by arrowheads), which are obtainable
through standard software packages. The final example ties together several of these ideas.

Find the critical points and solve the phase plane equation (2) for
dx
- b -2,

(14)

Y -2)y-2).

What is the asymptotic behavior of the solutions starting from (3, 0), (5, 0), and (2, 3)?

To find the critical points, we solve the system

—y(y=2)=0, k-2)(y-2=0.

One family of solutions to this system is given by y = 2 with x arbitrary; that is, the line y = 2.
If y # 2, then the system simplifies to —y = 0, and x — 2 = 0, which has the solution x = 2,
y = 0. Hence, the critical point set consists of the isolated point (2, 0) and the horizontal line
y = 2. The corresponding equilibrium solutions are x(z) = 2, y(¢) = 0, and the family x(z) = c,
y(t) = 2, where ¢ is an arbitrary constant.

The trajectories in the phase plane satisfy the equation

dy (=2)(y—-2) x-2
15 —== = - .
1 dx —y(y = 2) y

Solving (15) by separating variables,
ydy = —(x — 2)dx or v+ x—-2F=cC,

demonstrates that the trajectories lie on concentric circles centered at (2, 0). See Figure 5.15.

Figure 5.15 Phase plane diagram for Example 5
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Next we analyze the flow along each trajectory. From the equation dx/dr = —y(y — 2), we
see that x is decreasing when y > 2. This means the flow is from right to left along the arc of a circle
that lies above the line y = 2. For 0 <y < 2, we have dx/dt > 0, so in this region the flow is from
left to right. Furthermore, for y < 0, we have dx/dt < 0, and again the flow is from right to left.

We now observe in Figure 5.15 that there are four types of trajectories associated with sys-
tem (14): (a) those that begin above the line y = 2 and follow the arc of a circle counterclock-
wise back to that line; (b) those that begin below the line y = 2 and follow the arc of a circle
clockwise back to that line; (c) those that continually move clockwise around a circle centered
at (2, 0) with radius less than 2 (i.e., they do not intersect the line y = 2); and finally, (d) the
critical points (2, 0) and y = 2, x arbitrary.

The solution starting at (3, 0) lies on a circle with no critical points; therefore, it is a
periodic solution, and the critical point (2, 0) is a center. But the circle containing the solutions

starting at (5, 0) and at (2, 3) has critical points at (2 - \/g, 2) and <2 + \/g, 2). The direction

arrows indicate that both solutions approach (2 - \/g 2) asymptotically (as  — +00). They
lie on the same circle (or phase plane solution curve), but they are quite different trajectories.

Note that for the system (14) the critical points on the line y = 2 are not isolated, so they
do not fit into any of the categories depicted in Figure 5.12. Observe also that all solutions of
this system are bounded, since they are confined to circles.

5.4 EXERCISES

In Problems 1 and 2, verify that the pair x(t), y(t) is a In Problems 7-9, solve the phase plane equation (2),

solution to the given system. Sketch the trajectory of the page 264, for the given system.
iven solution in the phase plane.
& P P 7.@231—1, 8.@=x2—2y_3,
dx 3 dy dt dt
1. — =3y, — =y
dt dt dy ., dy_32 5
x()=e¥,  y)=e dr ~ ¢ dr — Y T
dx dy ) dx
. — = _— = . 9. - = 2 - 5
2 dt Toodt 3% dt Yo
x(t)=t+1, yt)=1+3>+ 3¢ dy
—=e +y
dt
In Problems 3—6, find the critical point set for the given 10. Find all the critical points of the system
system.
d. dx @ = x2 —1
X - )
J.—=x—-y, 4. —=y—1, dt
;it ;lt dy o
@& _ 2, 2 ay _ dt ’
P +y 1 P +y+5
and the xy-phase plane solution curves. Thereby
dx ) dx ) . .
S. a T 2xy , 6. YT 3y+2, prove that there are two trajectories that are gen-
d uine semicircles. What are the endpoints of the
CA — 2 D (- — semicircles?
P = =1 —2)
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In Problems 11-14, solve the phase plane equation for [ 26. Using software, sketch the direction field in the

the given system. Then sketch by hand several represen-
tative trajectories (with their flow arrows).

11.%22)2, 12.%=—8y,
%:2); %=18x

13.%=(y—x)(y—1), 14.%=%,
F-we-ny 22

[ In Problems 15-18, find all critical points for the given

system. Then use a software package to sketch the direc-
tion field in the phase plane and from this describe the sta-
bility of the critical points (i.e., compare with Figure 5.12).

ax _

15. 2 =2+ y+3, 16. - = —5x+ 2y,
%=—3x—2y—4 %:x—@

17.%=2x+13y, 18.%=x(7—x—2y),
%=—x—2y %=y(5—x—y)

L. N n Problems 19-24, convert the given second-order

equation into a first-order system by setting v = y'. Then
find all the critical points in the yv-plane. Finally, sketch
(by hand or software) the direction fields, and describe
the stability of the critical points (i.e., compare with Fig-

ure 5.12).
d2y dzy

19. — —y=0 200 — +y=0
a7 ar 7
dzy 2

2. —5 +y+y =0 22, —5 +y'=
a0 a7

23. y"(1) + y(t) = y(1)* =0

24. y"(1) + y(1) = y(1) =
Using software, sketch the direction field in the

phase plane for the system
dx/dt =y ,
dy/dt = —x + x° .
From the sketch, conjecture whether the solution
passing through each given point is periodic:
(a) (0.25,0.25) () (2,2) (¢) (1,0)

2.

28.

29.

phase plane for the system

dx/dt =y ,
dy/dt = —x — x* .
From the sketch, conjecture whether all solutions of

this system are bounded. Solve the phase plane equa-
tion and confirm your conjecture.

Using software, sketch the direction field in the
phase plane for the system

dxjdi = —2x + v,
dy/dt = —5x — 4y .

From the sketch, predict the asymptotic limit (as
t — +00) of the solution starting at (1, 1).

Figure 5.16 displays some trajectories for the system
dx/dt =y ,
dy/dt = —x + x* .

What types of critical points (compare Figure 5.12)
occur at (O, 0) and (1, 0)?

Figure 5.16 Phase plane for Problem 28

The phase plane diagrams depicted in Figure 5.12
were derived from the following systems. Use any
method (except software) to match the systems to
the graphs.

(a) dx/dt = x , (b) dx/dt =y/2 ,
dy/dt = 3y dy/dt = —2x

(¢) dx/dt = =5x+ 2y, () dxfdt=2x—y,
dy/dt = x — 4y dy/dt = x + 2y

(e) dx/dt = 5x — 3y , ) dx/dt = —y ,
dy/dt = 4x — 3y dy/dt = x — y
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A proof of Theorem 1, page 268, is outlined below.
The goal is to show that f(x*, y*) = g(x*, y*¥) = 0.
Justify each step.

(a) From the given hypotheses, deduce that
im, oo’ (1) = (%, y*) and Tim,_, . oy'(r) =
g, y¥).

(b) Suppose f(x*, y*) > 0. Then, by continuity,
x'(¢) > f(x*, y*)/2 forall large ¢ (say, fort = T).
Deduce from this that x(r) > tf(x*, y*)/2 + C
fort > T, where C is some constant.

(¢) Conclude from part (b) that lim,_, , . . x(f) = +o0,
contradicting the fact that this limit is the finite
number x*. Thus, f(x*, y*) cannot be positive.

(d) Argue similarly that the supposition that
f (x*, y*) < 0 also leads to a contradiction; hence,
£(x*, y*) must be zero.

(e) In the same manner, argue that g(x*, y*) must
be zero.

Therefore, f(x*, y*) = g(x*, y*) = 0, and (x*, y*)

is a critical point.

Phase plane analysis provides a quick derivation of the
energy integral lemma of Section 4.8 (page 204). By
completing the following steps, prove that solutions of
equations of the special form y” = f(y) satisfy

307 -

where F(y) is an antiderivative of f(y).

F(y) = constant ,

(a) Set v =y and write y” = f(y) as an equiva-
lent first-order system.

(b) Show that the solutions to the yv-phase plane
equation for the system in part (a) satisfy
v%/2 = F(y) + K. Replacing v by y’ then com-
pletes the proof.

Use the result of Problem 31 to prove that all solu-
tions to the equation

Y+ =0
remain bounded. [Hint: Argue that y*/4 is bounded
above by the constant appearing in Problem 31.]
A Problem of Current Interest. The motion of an
iron bar attracted by the magnetic field produced by
a parallel current wire and restrained by springs (see
Figure 5.17) is governed by the equation

2
dx: n 1

‘x b
dr? A—x

for —xp <x <A,

wire

Y

Figure 5.17 Bar restrained by springs
and attracted by a parallel current

where the constants x; and A are, respectively, the
distances from the bar to the wall and to the wire when
the bar is at equilibrium (rest) with the current off.

(a) Setting v = dx/dt, convert the second-order
equation to an equivalent first-order system.

(b) Solve the phase plane equation for the system in
part (a) and thereby show that its solutions are
given by

v=2VC—-x2—2In(A —x),

where C is a constant.

(¢) Show thatif A < 2 there are no critical points in
the xv-phase plane, whereas if A > 2 there are
two critical points. For the latter case, determine
these critical points.

D (d) Physically, the case A < 2 corresponds to a

current so high that the magnetic attraction
completely overpowers the spring. To gain
insight into this, use software to plot the phase
plane diagrams for the system when A = 1 and
when A = 3.

(e) From your phase plane diagrams in part (d),
describe the possible motions of the bar when
A =1 and when A = 3, under various initial
conditions.

[ 34. Falling Object. The motion of an object moving

vertically through the air is governed by the equation
d’y _
dar’

8 dy
V2 dt

dy
dt
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where y is the upward vertical displacement and V is a
constant called the terminal speed. Take g = 32 ft/sec?
and V = 50 ft/sec. Sketch trajectories in the yv-phase
plane for —100 =y =100, —100 = v = 100,
starting fromy = 0 and v = =75, —50, —25, 0, 25,
50, and 75 ft/sec. Interpret the trajectories physi-
cally; why is V called the terminal speed?

Sticky Friction. An alternative for the damping
friction model F = —by’ discussed in Section 4.1 is
the “sticky friction” model. For a mass sliding on a
surface as depicted in Figure 5.18, the contact friction
is more complicated than simply —by’. We observe,
for example, that even if the mass is displaced slightly
off the equilibrium location y = 0, it may nonetheless
remain stationary due to the fact that the spring force
—ky is insufficient to break the static friction’s grip. If
the maximum force that the friction can exert is
denoted by p, then a feasible model is given by

ky if |ky| <
and y' =0,
Flricion = | m sign(y) , if |ky| = p
and y' =0,
—wsign(y’) , ify #0 .
y=0
|
|
|
! y
I
k

]

Friction

Figure 5.18 Mass—spring system with friction

(The function sign(s) is +1 when s > 0, —1 when
s < 0, and 0 when s = 0.) The motion is governed
by the equation

d2y
m? = —ky * Fliction -

(16)
Thus, if the mass is at rest, friction balances the
spring force if |y| < w/k but simply opposes it with
intensity w if |y| = w/k. If the mass is moving, fric-
tion opposes the velocity with the same intensity u.

Section 5.4

36.

275

Introduction to the Phase Plane

(a) Taking m = uw = k = 1, convert (16) into the
first-order system

!

y =v,
0, if |y <1
(17) and ‘UZO,
v ={—y+sign(y), if|y|=1
and v=20,
—y —sign(v), ifv#0.

(b) Form the phase plane equation for (17) when

v # 0 and solve it to derive the solutions
u2+(yi1)2=c,

where the plus sign prevails for v > 0 and the

minus sign for v < 0.

(c) Identify the trajectories in the phase plane as
two families of concentric semicircles. What is
the center of the semicircles in the upper half-
plane? The lower half-plane?

(d) What are the critical points for (17)?

(e) Sketch the trajectory in the phase plane of the
mass released from rest at y = 7.5. At what
value for y does the mass come to rest?

Rigid Body Nutation. Euler’s equations describe
the motion of the principal-axis components of the
angular velocity of a freely rotating rigid body (such
as a space station), as seen by an observer rotating
with the body (the astronauts, for example). This
motion is called nutation. If the angular velocity
components are denoted by x, y, and z, then an
example of Euler’s equations is the three-dimensional
autonomous system

dx/dt = yz ,
dy/dt = —2xz ,
dz/dt = xy .

The trajectory of a solution x(z), y(), z(f) to these

equations is the curve generated by the points

(x(t), (1), z(t)) in xyz-phase space as ¢ varies over an

interval L

(a) Show that each trajectory of this system lies
on the surface of a (possibly degenerate)
sphere centered at the origin (0,0, 0). [Hint:
Compute %(x2 + y% + z?).] What does this say
about the magnitude of the angular velocity
vector?
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(b)

(V]

(d)

(e)
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Find all the critical points of the system, i.e., all
points (xg, Yo, zo) such that x(z) = x,, y(1) = y,,
z(t) = z, is a solution. For such solutions, the
angular velocity vector remains constant in the
body system.

Show that the trajectories of the system lie along
the intersection of a sphere and an elliptic cylinder
of the form y2 + 2x? = C, for some constant C.
[Hint: Consider the expression for dy/dx implied
by Euler’s equations.]

Using the results of parts (b) and (c), argue that the
trajectories of this system are closed curves. What
does this say about the corresponding solutions?
Figure 5.19 displays some typical trajectories
for this system. Discuss the stability of the three

critical points indicated on the positive axes. Figure 5.19 Trajectories for Euler’s system

EPIDEMIC AND TUMOR GROWTH MODELS

5 5 APPLICATIONS TO BIOMATHEMATICS:

In this section we are going to survey some issues in biological systems that have been
successfully modeled by differential equations. We begin by reviewing the population models
described in Sections 3.2 and 5.3.

In the Malthusian model, the rate of growth of a population p(?) is proportional to the size
of the existing population:

dp

1) Eka(k>0).
Cells that reproduce by splitting, such as amoebae and bacteria, are obvious biological examples
of this type of growth. Equation (1) implies that a Malthusian population grows exponentially;
there is no mechanism for constraining the growth. In Section 3.2 we saw that certain popula-
tions exhibit Malthusian growth over limited periods of time (as does compound interest).”

Inserting a negative growth rate,

dp

@ =k,
results in solutions that decay exponentially. Their average lifetime is 1/k, and their half-life is
(In 2)/k (Problems 6 and 8). In animals, certain organs such as the kidney serve to cleanse the
bloodstream of unwanted components (creatinine clearance, renal clearance), and their con-
centrations diminish exponentially. As a general rule, the body tends to dissipate ingested
drugs in such a manner. (Of course, the most familiar physical instance of Malthusian disinte-
gration is radioactive decay.) Note that if there are both growth and extinction processes,
dpldt = k,.p — k_p and the equation in (1) still holds with k = k. — k_.

“Gordon E. Moore (1929-) has observed that the number of transistors on new integrated circuits produced by the elec-
tronics industry doubles every 24 months. “Moore’s law” is commonly cited by industrialists.
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When there are two-party interactions occurring in the population that decrease the growth
rate, such as competition for resources or violent crime, the logistic model might be applicable;
it assumes that the extinction rate is proportional to the number of possible pairs in the popula-
tion, p(p — 1)/2:

dp p(p—1 . dp _ i
3) = kip — ky 5 or, equivalently, i Ap(p — p1) -

Rodent, bird, and plant populations exhibit logistic growth rates due to social structure, territo-
riality, and competition for light and space, respectively. The logistic function

PoP1 —
PO e - ppe i T PO
was shown in Section 3.2 to be the solution of (3), and typical graphs of p(r) were displayed
there.

In Section 5.3 we observed that the Volterra—Lotka model for two different populations, a
predator x,(t) and a prey x,(t), postulates a Malthusian growth rate for the prey and an extinc-
tion rate governed by xx,, the number of possible pairings of one from each population,

dxl

@ o Ax; — Bxix; |

while predators follow a Malthusian extinction rate and pairwise growth rate

dX2 .
Q) 7 —Cxy + Dxix, .
Volterra—Lotka dynamics have been observed in blood vessel growth (predator = new capil-
lary tips; prey = chemoattractant), fish populations, and several animal—plant interactions.
Systems like (4)—(5) were studied in Section 5.3 with the aid of the Runge—Kutta algorithm.
Now, armed with the insights of Section 5.4, we can further explore this model theoretically.
First, we perform a “reality check” by proving that the populations x,(7), x,(f) in the
Volterra—Lotka model never change sign. Separating (4) leads to

1 dx; _dlnx,
X, dt  dt

:A_BX2,

while integrating from O to ¢ results in

(6) xl(t) = xl(O)e,[(;{A_sz(T)}dT ,

and the exponential factor is always positive. Thus x;(#) [and similarly x,(7)] retains its initial
sign (negative populations never arise).

Find and interpret the critical points for the Volterra—Lotka model (4)—(5).

The system

dxl

W - Ax1 BX]]C’) = B)Cl Xy — B - .
7
I

" One might propose that the growth rate in animal populations is due to rwo-party interactions as well. (Wink, wink.)
However, in monogamous societies, the number of pairs participating in procreation is proportional to p/2, leading to
(1). A growth rate determined by a/l possible pairings p(p — 1)/2 would indicate an extremely utopian social order.
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Figure 5.20 Typical direction field diagram for the Volterra—Lotka system

has the trivial solution x(f) = x,() = 0, with an obvious interpretation in terms of populations.
If all four coefficients A, B, C, and D are positive, there is also the more interesting solution

A C
(6] =5, =45
At these population levels, the growth and extinction rates for each species cancel. The

direction field diagram in Figure 5.20 for the phase plane equation

dx; —Cx, + Dxix, x, —=C + Dx;

9 =
©) dx; Ax; — Bxix, x; A — Bx,

suggests that this equilibrium is a center (compare Figure 5.12) with closed (periodic) neigh-
boring trajectories, in accordance with the simulations in Section 5.3. However it is conceiv-
able that some spiral trajectories might snake through the field pattern and approach the critical
point asymptotically. A rather tricky argument in Problem 4 demonstrates that this is not the
case. ¢

The SIR Epidemic Model. The SIR" model for an epidemic addresses the spread of diseases
that are only contracted by contact with an infected individual; its victims, once recovered, are
immune to further infection and are themselves noninfectious. So the members of a population
of size N fall into three classes:

S(#) = the number of susceptible individuals—that is, those who have not been
infected; s := S/N is the fraction of susceptibles.

1(¢) = the number of individuals who are currently infected, comprising a fraction
i :=I/N of the population.

R(f) = the number of individuals who have recovered from infection, comprising the
fraction r := R/N.

Introduced by W. O. Kermack and A. G. McKendrick in “A Contribution to the Mathematical Theory of Epidemics.”
Proc. Royal Soc. London, Vol. A115 (1927): 700-721.
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The classic SIR epidemic model assumes that on the average, an infectious individual
encounters a people per unit time (usually per week). Thus, a total of al people per week are
contacted by infectees, but only a fraction s = S/N of them are susceptible. So the susceptible
population diminishes at a rate

(10) % = —sal or (dividing by N)
ds .
(11) - asi .

The parameter « is crucial in disease control. Crowded conditions, or high a, make it difficult
to combat the spread of infection. Ideally, we would quarantine the infectees (low a) to fight
the epidemic.

The infected population is (obviously) increased whenever a susceptible individual is
infected. Additionally, infectees recover in a Malthusian-disintegrative manner over an average
time of, say, 1/k weeks [recall (1)], so the infected population changes at a rate

; dl _ T _k
12) g sal — kI = a(s a)l or

13) % = a<s — ];>i .

And, of course, the population of recovered individuals increases whenever an infectee is healed:

dR dr _ .
(14) ar = kI or dt—kl.

With the SIR model, the total population count remains unchanged:

dS +1+ R
T=—sa1+sal—kl+kl=0.

Thus, any fatalities are tallied in the “recovered/noninfectious” population R.

Interestingly, equations (11) and (13) do not contain R or 7 so they are suitable for phase
plane analysis. In fact they constitute a Volterra—Lotka system with A = 0, B = D = q, and
C = k. Because the coefficient A is zero, the critical point structure is different from that
discussed in Example 1. Specifically, if —asi in (11) is zero, then only —ki remains on the right in
(13), so I(r) = i(t) = 0 is necessary and sufficient for a critical point, with S unrestricted. (Physi-
cally, this means the populations remain stable only if there are no carriers of the infection.)

Our earlier argument has shown that if s(¢) and i(¢) are initially positive, they remain so. As
a result we conclude from (11) immediately that s(#) decreases monotonically; as such, it has a
limiting value s(c0) as t — oo. Does i(f) have a limiting value also? If so, {s(c0), i(c0)} would
be a critical point by Theorem 1 of Section 5.4, and thus i(co) = 0.

To analyze i(f) consider the phase plane equation for (11) and (13):

di  asi — ki k

S == 1t

which has solutions

(16) i=—s+§1ns+K.
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Figure 5.21 Mortality data for Hong Kong flu, New York City

From (16) we see that s(co) cannot be zero; otherwise the right-hand side would eventually be
negative, contradicting i(f) > 0. Therefore, (16) demonstrates that i(f) does have a limiting
value i(0c0) = —s(o0) + (k/a)ln s(oco) + K. As noted, i(0o) must then be zero.

From (13) we further conclude that if s(0) exceeds the “threshold value” k/a, the infected
fraction i(¢) will initially increase (di/dt > 0 at t = 0) before eventually dying out. The peak
value of i(f) occurs when di/dt = 0 = a[s — (k/a)li, i.e., when s(f) passes through the value k/a.
In the jargon of epidemiology, this phenomenon defines an “epidemic.” You will be directed in
Problem 10 to show that if s(0) = k/a, the infected population diminishes monotonically, and
no epidemic develops.

According to data issued by the Centers for Disease Control and Prevention (CDC) in Atlanta,
Georgia, the Hong Kong flu epidemic during the winter of 1968—1969 was responsible for
1035 deaths in New York City (population 7,900,000), according to the time chart in Figure 5.21.
Analyze this data with the SIR model.

Of course, we need to make some assumptions about the parameters. First of all, only a small
percentage of people who contract Hong Kong flu perish, so let’s assume that the chart reflects
a scaled version of the infected population fraction i(7). It is known that the recovery period for
this flu is around 5 days, or 5/7 week, so we try k = 7/5 = 1.4. And since the infectees spend
much of their convalescence in bed, the average contact rate a is probably less than 1 person
per day or 7 per week. The CDC estimated that the initial infected population /(0) was about
10, so the initial data for (11), (13), and (14) are
7,900,000 — 10 10

$(0) = ———————— =~ 0.9999987, i) =

= — =X . X —6 = .
7,900,000 7,900,000 - 1:2698 X 1075 r(0) =0

"We borrow liberally from “The SIR Model for Spread of Disease” by Duke University’s David Smith and Lang
Moore, Journal of Online Mathematics and Its Applications, The MAA Mathematical Sciences Digital Library,
http://mathdl.maa.org/mathDL/4/?pa=content&sa=viewDocument&nodeld=479&bodyld=612, copyright 2000, CCP
and the authors, published December, 2001. The article contains much interesting information about this epidemic.
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1.0 7
0.9 1
0.8 1
0.7 1
0.6 1
0.5 1
0.4 1
0.3 1
0.2 1
0.1 1

Figure 5.22 SIR simulations (a) k = 1.4,a =2.0;(b)k=14,a=35;(c)k=14,a=6.0

Numerical simulations of this system are displayed in Figure 5.22.7 The contact rate
a = 3.5 per week generates an infection fraction curve that closely matches the mortality data’s
characteristics: time of peak and duration of epidemic. ¢

A Tumor Growth Model.”" The observed growth of certain tumors can be explained by a
model that is mathematically similar to the epidemic model. The total number of cells N in the
tumor subdivides into a population P that proliferates by splitting (Malthusian growth) and a
population Q that remains quiescent. However, the proliferating cells also can make a transi-
tion to the quiescent state, and this occurrence is modeled as a Malthusian-like decay with a
“rate” r(N) that increases with the overall size of the tumor:

.de _

(17) E =cP r(N)P 5
ag

(18) a r(N)P .

Thus the total population N increases only when the proliferating cells split, as can be seen by
adding the equations (17) and (18):

dP +
(19) %:%:c[)

We take (17) and (19) as the system for our analysis. The phase plane equation

4P _cP—rMP ()
(20) W_ cP =1 c

can be integrated, leading to a formula for P in terms of N

(21) P=N—%Jr(N)dN+K.

TAn applet, maintained on the Web at http://alamos.math.arizona.edu/~rychlik/JOde/index.html, automates most of
the differential equation algorithms discussed in this book.

""The authors wish to thank Dr. Glenn Webb of Vanderbilt University for this application. See M. Gyllenberg and G. F.
Webb, “Quiescence as an Explanation of Gompertz Tumor Growth,” Growth, Development, and Aging, Vol. 53 (1989):
25-55.
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Suppose the initial conditions are P(0) = 1, Q(0) = 0, and N(0) = 1 (a single proliferating
cell). Then we can eliminate the nuisance constant K by taking the indefinite integral in (21) to
run from 1 to N and evaluating at r = O:

1
IZI—%J r(N)JAN+K = K=0.
1
Insertion of (21) with K = 0 into (19) produces a differential equation for N alone:

N
(22) dN =cN — f r(u)du .
dt ]
The Gompertz law
(23) N = etme ™

has been observed experimentally for the growth of some tumors. Show that a transition rate
r(N) of the form b(1 + In N) predicts Gompertzian growth.

If the indicated integral of the rate (V) is carried out, (22) becomes

24) %:CN—b(N—l)—b(NlnN—N-i—I)Z(C—blnN)N.
Dividing by N we obtain a linear differential equation for the function In N
AN _ _piN+ e
dt

whose solution, for the initial condition N(0) = 1, is found by the methods of Section 2.3 to be
In N(r) = %(1 — ey,

confirming (23). ¢

Problem 9 invites the reader to show that if the growth rate is modeled as r(N) =
s(2N — 1), then the solution of (22) describes logistic growth. Typical curves for the Gompertz
and logistic models are displayed in Figure 5.23. See also Figure 3.4 on page 97.

Other applications of differential equations to biomathematics appear in the discussions of arti-
ficial respiration (Project B) in Chapter 2, HIV infection (Project A) and aquaculture (Project B) in
Chapter 3, and spread of staph infections (Project B) and growth of phytoplankton (Project F)
in this chapter.

(a) (b)

Figure 5.23 (a) Gompertz and (b) logistic curves
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5.5 EXERCISES

[ ] 1. Logistic Model. In Section 3.2 we discussed the

logistic equation

dp _ 2 _
E_APIP_AP , r0) = pg

and its use in modeling population growth. A more
general model might involve the equation

dp _ , _
E—MW—M, p0) =pg ,

(25)
where r > 1. To see the effect of changing the param-
eter r in (25), take p; = 3, A = 1, and py = 1. Then
use a numerical scheme such as Runge—Kutta with
h = 0.25 to approximate the solution to (25) on the
interval 0 = ¢t = 5 for » = 1.5, 2, and 3. What is the
limiting population in each case? For r > 1, deter-
mine a general formula for the limiting population.

. Radioisotopes and Cancer Detection. A radioiso-
tope commonly used in the detection of breast cancer
is technetium-99m. This radionuclide is attached to a
chemical that upon injection into a patient accumu-
lates at cancer sites. The isotope’s radiation is then
detected and the site located, using gamma cameras or
other tomographic devices.

Technetium-99m decays radioactively in accor-
dance with the equation dy/dt = —ky, with k =
0.1155/h. The short half-life of technetium-99m has
the advantage that its radioactivity does not endanger
the patient. A disadvantage is that the isotope must be
manufactured in a cyclotron. Since hospitals are not
equipped with cyclotrons, doses of technetium-99m
have to be ordered in advance from medical suppliers.

Suppose a dosage of 5 millicuries (mCi) of
technetium-99m is to be administered to a patient.
Estimate the delivery time from production at the
manufacturer to arrival at the hospital treatment
room to be 24 h and calculate the amount of the
radionuclide that the hospital must order, to be able
to administer the proper dosage.

. Secretion of Hormones. The secretion of hor-
mones into the blood is often a periodic activity. If a
hormone is secreted on a 24-h cycle, then the rate of

change of the level of the hormone in the blood may
be represented by the initial value problem

%=a—,8005717-—2t—kx , x(0) = xq ,

where x(7) is the amount of the hormone in the blood
at time ¢, « is the average secretion rate, 3 is the
amount of daily variation in the secretion, and k is a
positive constant reflecting the rate at which the
body removes the hormone from the blood. If
a=B=1,k=2,and x, = 10, solve for x(7).

. Prove that the critical point (8) of the Volterra—Lotka

system is a center; that is, the neighboring trajecto-
ries are periodic. Hint: Observe that (9) is separable
and show that its solutions can be expressed as

(26) [x5e B2 [x§e™Pu] =K .

Prove that the maximum of the function x”e™ %" is
(p/ge)”, occurring at the unique value x = p/g (see
Figure 5.24), so the critical values (8) maximize the
factors on the left in (26). Argue that if K takes
the corresponding maximum value (A/BeY\(C/De)¢,
the critical point (8) is the (unique) solution of (26),
and it cannot be an endpoint of any trajectory for
(26) with a lower value of K."

Q—

t X

1

v

Figure 5.24 Graph of xe ™

5. Suppose for a certain disease described by the SIR

model it is determined that @ = 0.003 and b = 0.5.

(a) In the SI-phase plane, sketch the trajectory cor-
responding to the initial condition that one per-
son is infected and 700 persons are susceptible.

"In fact, the periodic fluctuations predicted by the Volterra—Lotka model were observed in fish populations by Lotka’s

son-in-law, Humberto D’ Ancona.
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(b) From your graph in part (a), estimate the peak
number of infected persons. Compare this with
the theoretical prediction S = k/a = 167 persons
when the epidemic is at its peak.

Show that the half-life of solutions to (2)—that is,
the time required for the solution to decay to one-
half of its value—equals (In 2)/k.

Complete the solution of the tumor growth model
for Example 3 by finding P(¢) and Q(%).

If p(¢) is a Malthusian population that diminishes
according to (2), then p(t,) — p(#;) is the number of
individuals in the population whose lifetime lies
between #; and #,. Argue that the average lifetime of
the population is given by the formula

)| gy

Jo ! dt
Joop(t)dt

0

and show that this equals 1/k.

9.

10.

11.
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Show that with the transition rate formula r(N) =
s(2N — 1), equation (22) takes the form of the equa-
tion for the logistic model (Section 3.2, equation
(14)). Solve (22) for this case.

Prove that the infected population I(f) in the SIR
model does not increase if S(0) is less than or equal
to k/a.

An epidemic reported by the British Communicable
Disease Surveillance Center in the British Medical
Journal (March 4, 1978, p. 587) took place in a
boarding school with 763 residents.” The statistics
for the infected population are shown in the graph in
Figure 5.25.

Assuming that the average duration of the infection
is 2 days, use a numerical differential equation solver
such as the Web-based one described in Example 2 to
try to reproduce the data. Take S(0) = 762, I(0) = 1,
R(0) = 0 as initial conditions. Experiment with rea-
sonable estimates for the average number of contacts
per day by the infected students, who were confined
to bed after the infection was detected. What value of
this parameter seems to fit the curve best?

300
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Figure 5.25 Flu data for Problem 11

See also the discussion of this epidemic in Mathematical Biology I, An Introduction, by J. D. Murray (Springer-

Verlag, New York, 2002), 325-326.



