From b602dcd4ae54aa24f467d0db2522530510d60f3f Mon Sep 17 00:00:00 2001 From: Marek Blok <marek.blok@pg.edu.pl> Date: Wed, 15 Nov 2023 18:44:26 +0000 Subject: [PATCH] Update README.md --- README.md | 24 ++++-------------------- 1 file changed, 4 insertions(+), 20 deletions(-) diff --git a/README.md b/README.md index 8f74809..cb42b7c 100644 --- a/README.md +++ b/README.md @@ -5,6 +5,9 @@ HSI Neural Networks [2] Blok, M., BanaĹ, J., & PietroĹaj, M. (2022). Strategie treningu neuronowego estymatora czÄstotliwoĹci tonu krtaniowego z uĹźyciem generatora syntetycznych samogĹosek. PrzeglÄ d Telekomunikacyjny+ WiadomoĹci Telekomunikacyjne, 604-607. +**NOTE:** The below instructions are outdated and relate to the previous versions of the project. +The latest instructions (in Polish) are available on projects Wiki page: https://git.pg.edu.pl/ife/IFE_raw_base/-/wikis/home + # Requirements & installation: 1. Install Miniconda3 for Windows: https://docs.conda.io/en/latest/miniconda.html 2. Create new conda environment: @@ -13,10 +16,9 @@ HSI Neural Networks 3. Install Pytorch on your active environment: - use command: <i>conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch</i> 4. Install additional python modules with requirement.txt file from this repository: - - *???* use command: <i>pip install -r requirements.txt</i> - use command: <i>conda install -c conda-forge --file requirements.txt</i> - Once the above steps are completed, the environment is ready to be run. +Once the above steps are completed, the environment is ready to be run. # Project overview @@ -54,21 +56,3 @@ The below files can be treated as examples of proper usage of the scripts: # Usage To run the chosen script chose execute it under previously created (and active) conda environment. Use command: <i>python \<script-name></i>example: <i>python prepare_data.py</i>. All paths should be set directly in the script file. - -# Additional files - -Below are the links to data that is not stored in the repository. These files can be used for running the steps explained in the previous section. - -1. Data preparation: -- [*.dat file with raw data](https://pgedupl-my.sharepoint.com/:u:/g/personal/s119424_o365_student_pg_edu_pl/EZf6b_0dSHlOlM5mLlXyWHwBwULDCxfn5jE0_lK2jWhV3g?e=dagyw2) -- [*csv file with matching labels](https://pgedupl-my.sharepoint.com/:x:/g/personal/s119424_o365_student_pg_edu_pl/EWRMzbjnN2RGk_-5V5fcbd4B1Q68NLJkjE5av_mXgjgPzQ?e=hOhSfO) - -2. Training step: -- [*.csv with training data - linear, 100 classes <50,400> Hz](https://pgedupl-my.sharepoint.com/:x:/g/personal/s119424_o365_student_pg_edu_pl/EfIZuLECXARCl7JVT99z8ZgBdeJ1mz6HDuBmURf2wOY2MQ?e=wChc4X) - -3. Inference step: -- [*.csv with synthetic evaluation data - linear, 100 classes <50,400> Hz](https://pgedupl-my.sharepoint.com/:x:/g/personal/s119424_o365_student_pg_edu_pl/EdFaTCyEMphDnNOz4gi82dAB0fh0z2NDFtzfSGhpraK_ig?e=lphWxu) -- [*.csv with speech evaluation data - linear, 100 classes <50,400> Hz](https://pgedupl-my.sharepoint.com/:x:/g/personal/s119424_o365_student_pg_edu_pl/ESh8NF5cw8hIvuICRVa7qiABEzPZAvL2gSkhDa64rpafxg?e=Xx3gyB) -- [binary with already trained model - ~80% of accuracy](https://pgedupl-my.sharepoint.com/:u:/g/personal/s119424_o365_student_pg_edu_pl/EZGevrxyYxRKg9gYTW3PSSYBV6YCfdg06Nxhpn4Knp8pXg?e=cOtXLN) - -All files can be also found here: [Additional files](https://pgedupl-my.sharepoint.com/:f:/g/personal/s119424_o365_student_pg_edu_pl/ElmX25HbIKRJgVeHDqFmoaMBDqipqVyQZHn4HbEDQajRNQ?e=1ltbkQ) -- GitLab